
PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

Mark Divecchio
“San Diego Mark” on the OGR Forums
markd@silogic.com

 This is part of the Remote Train Control Manual.
 Copyright © 2015
 Mark C. DiVecchio

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. You should
have received a copy of the GNU Free Documentation License along with Remote Train Control. If
not, see <http://www.gnu.org/licenses/>.

June 2019 – updates to format of LashUp commands in V5.0 of DCS.

PC Control of MTH Engines by Serial Connection to the TIU

To me, MTH makes the best engines and rolling stock for my railroads of choice, the Pittsburgh &
Lake Erie Railroad and the Aliquippa & Southern Railroad (where my grandfather worked). MTH has
many many engines and dozen of pieces of rolling stock for these railroads. My layout uses only
MTH's DCS.

DCS has been out for almost 15 years. I've been waiting for a way to control my layout using my PC.
I've always used Windows PC's so this effort was done originally using XP and more recently
Windows 7 and Windows 10.

A few years ago, Mike Hewett presented a PC interface to the tethered mode of operation of DCS. He
showed how to sniff out the RS-232 packets running between the Remote and the TIU, how to save
those packets and how to later transmit those packets to the TIU from the PC.

Mike presented his findings in three videos which he produced around May of 2011. Look at those
three videos before you continue with my description.

Chapter 1 https://www.youtube.com/watch?v=MxlUb-YccZw
Chapter 2 https://www.youtube.com/watch?v=IBrhLSVHjIo
Chapter 3 https://www.youtube.com/watch?v=oqaeeR3pgPw

Look at this OGR Forum thread for a followup:

http://ogrforum.ogaugerr.com/topic/wonderful-gift-dcs-to-pc-control?
reply=5371679459030161#5371679459030161

Mike made more progress as shown in this video from 2013

https://www.youtube.com/watch?v=Ug5CSZFwo-c

https://www.youtube.com/watch?v=Ug5CSZFwo-c
http://ogrforum.ogaugerr.com/topic/wonderful-gift-dcs-to-pc-control?reply=5371679459030161#5371679459030161
http://ogrforum.ogaugerr.com/topic/wonderful-gift-dcs-to-pc-control?reply=5371679459030161#5371679459030161
https://www.youtube.com/watch?v=oqaeeR3pgPw
https://www.youtube.com/watch?v=IBrhLSVHjIo
https://www.youtube.com/watch?v=MxlUb-YccZw
http://www.gnu.org/licenses/
mailto:markd@silogic.com

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

I think that I first saw what Mike did around October of 2011 as my earliest date stamps on files that
I've saved are from that date.

Mike's methodology was to record the packets sent by the Remote when each key on the Remote
was pressed. Without regard to the contents of the packets, he saved them in a file. Then, later, his
PC program could read up those saved packets and send them to the TIU. He created a very nice
touch screen interface and he could run his DCS trains from his PC.

I contacted Mike back then and he sent me copies of his program and I was able to build up his
interface to the TIU, sniff out the needed packets and I had a way to control my trains from my PC.

This worked up to a point. When I added a new engine number, I had to run the packet sniffer again
and pick up the packets needed for the new engine number. Mike's program only captured a subset
of the many, many types of commands that could be sent to the TIU. Mike did not read back
responses from the TIU or process any of those returned packets.

I was looking for something more. I needed to understand the protocol over the tether cable.

With a lot of effort, I was able to understand almost all of the communications between the Remote
and TIU. I am now able to create packets to control the DCS engines. The packets are complete with
correct addressing, command syntax and CRC.

I figured this out by examination of the packets that I could sniff using Mike's original RS-232 interface
design and the port settings that he found. Without Mike's insights into the RS-232 data stream, I
don't think that would have been able to get a foothold into this protocol.

So again, I figured this out just by looking at the RS-232 stream over the tether cable. No code
disassembly, no logic analyzers, no opening up of Remotes or TIU's.

I made up a video (Screen Capture) of the operation of my RTC or Remote Train Control program.
This video demonstrates part of its use:

http://www.silogic.com/trains/RTC_Running.html

 The Encoded Data

Mike had designed an interface between the PC and the TIU where he could sniff out the packets that
the Remote sent to the TIU. I built up that interface and got to work.

Here are some of the packets from the Remote to the TIU. These were from the startup sequence:

5555595665AA656955665565A555A95A4D
555559566599656556655565559A669A4D
5555595665A6656656996965666A5666556565569A654D
5555595665A6666A56996965666A55695565A5959A564D
5555595665A6556A556565AA59554D
5555595665A66566559A6566666556695565A9595A554D

http://www.silogic.com/trains/RTC_Running.html

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

This was certainly encoded in some form or another. I know a little bit about this stuff so I started
guessing

It looks like a DC balanced code. DC balanced codes have a place in data transmission over wire. A
long wire is like a big capacitor. As you put a voltage on it, it starts to store that voltage. Not good for a
wire carrying a data signal because eventually the data signal becomes swamped by the built up
voltage (the DC component). This happens if you have more '1's than '0's or the opposite.

So what that means is that you want the signal to have the same number of '1's as '0's. It looked very
much like that was what we had. Look at the digits in the encoded packets. There are:

 hex binary
 ----- ---------

5 0101
9 1001
A 1010
6 0110

Except for the odd '4D' at the end, the packet was made up entirely of these 4 characters. Notice that
each of them had the same number of '1's and '0's.

I searched on the Internet and found a patent. Look at the patent.

DC balanced 4B/8B binary block code for digital data communications
United States Patent 5625644

Look at the 4 codedigits: 5 (0101), 6 (0110), 9 (1001) and A (1010) described in this patent. We have
exactly these 4 digits in our codewords.

The requirements set out in the patent to pick the codedigits:
1. Two digits make 8 bits - select code words with 4 1's and 4 0's.
2. Code words with no more than two consecutive 1's or 0's.
3. Select code words with '01' or “10” at each end.

The patent shows control word “4D” for end of transmission which was a pretty good indication that I
was on the right track since I saw the same thing. Read in the patent about why “4D” is still a good
codeword even though it does not meet all of the requirements.

There are 16 combinations (codewords) of the four codedigits. So I thought that there would be a one
to one mapping of the 16 combinations to the hex digits 0-F.

http://www.freepatentsonline.com/5625644.html

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

I was pretty sure that the mapping outlined in the DC Balanced Code patent was not the one used, so
I picked the simplest mapping. This was a VERY lucky guess – as you will see below, I hit on the
correct mapping on my first try. Use the four codedigits and put them in ascending value mapped to
binary in ascending value:

8 bit (hex) 4 bit (binary)
----- -------
55 0000
56 0001
59 0010
5A 0011

65 0100
66 0101
69 0110
6A 0111

95 1000
96 1001
99 1010
9A 1011

A5 1100
A6 1101
A9 1110
AA 1111

I looked at the Engine Number field as identified by Mike Hewett in his video. I sent the same
command to several engines and looked at the serial data. Per Barry's book, engine 1 on the remote
is called “DCS Engine” 2. I expected to see a binary 0000 0010 in there:

Engine 16 Serial Mapping to
Number Bits (in hex) 8 bit Binary
------- ------ --------------

2 5655 0001 0000
3 5656 0001 0001
4 5559 0000 0010
5 555A 0000 0011
6 5659 0001 0010
15 5A5A 0011 0011
16 5565 0000 0100
17 5566 0000 0101

This looked interesting. But the result of the mapping didn't quite look like an engine number. I stared
at it for a while (weeks!) and noticed that if I swapped around the bits in a certain way, I could get the
binary value that I wanted.

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

Repeating the above table with a new column:

Engine 16 Serial Mapping to 8 Bit Binary
Number Bits (in hex) 8 bit Binary Swapped
------- ------ -------------- --------------

2 5655 0001 0000 0000 0010
3 5656 0001 0001 0000 0011
4 5559 0000 0010 0000 0100
5 555A 0000 0011 0000 0101
6 5659 0001 0010 0000 0110
15 5A5A 0011 0011 0000 1111
16 5565 0000 0100 0001 0000
17 5566 0000 0101 0001 0001

What was this screwy bit swapping encoding? An Internet search led to these web pages:

Z-order Curve

 and

Decoding Morton Codes

As the articles describe, these codes are used to map a 2 dimensional space into a 1 dimensional
space to quickly estimate the physical distance between two points. I can't even guess why this
encoding into Morton Codes was used here.

https://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/
http://en.wikipedia.org/wiki/Z-order_curve

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

Here is a summary of the encoding from Encoded to 8 bit binary:

Then here is the reverse from 8 bit binary to Encoded:

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

 Understanding the Decoded Packets

This seemed right. Could I verify it by checking another part of the command that I understood?

Mike Hewett identified the command portion of the serial stream (from his video):

I picked an engine and increased the speed by 1 Smph at a time and recorded the commands

So it started to make sense. Look at the commands below. The first codeword was 5555 – which I
could convert to binary as 0000 0000. I could see where that could be the Sync byte also as identified
by Mike. The next byte is the engine number in binary, here it is 5A55 which is DCS engine 10
(remote engine 9 which is the engine number that I was using).

The next codeword is the same for all of these. Maybe its a command. It is 66A6 which decodes to
hex 0x73. It took me a few seconds to think “ASCII” and when I looked up that value it was an 's'
character – maybe a “speed' command. Where the commands actually in ASCII?

The next codeword was 6566 or 0x31 – ASCII '1'. For 1 Smph. So I could see the speed increasing
steadily up to ASCII '9'. At this point, the command length increased by 4 codedigits or one 8 bit
binary decoded byte. I'd bet this is because the ASCII became '1' followed by '0' for 10 Smph. I
confirmed this by looking at commands where the speed went from 99 to 100 Smph and I saw the
same thing happen.

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

Speed 1 to 10 Smph

55555A5566A66566966A56666A9999564D
------------ first 12 codedigits are the same – Sync, Engine Number and
------------ something – which turned out to be 's'
 ---- “s1” command
55555A5566A6666599655666A6A695A94D
 ---- “s2” command
55555A5566A6666699665666956996654D

55555A5566A665699A65566659A96A664D

55555A5566A6656A9A6656666A6669AA4D

55555A5566A66669996956666AA9959A4D

55555A5566A6666A996A5666596696564D

55555A5566A669659A6956665666A9994D

55555A5566A669669A6A566665A9AA554D

55555A5566A665666565A55556665A5A59964D
 -------- “s10” command

So I had figured out the format of the first part of the command.

I turned my attention to the byte that Mike identified as a “CRC Counter”. Well it was easy now, I
could use my decoding algorithm on that byte. I saw that it was a counter but after looking at a series
of commands, I could see that it was just a counter. It counted up to 0xFF and then restarted at 0x00.
(I learned much latter that the TIU would ignore commands that duplicated a counter value that was
just received. Probably caused by the remote resending a command that it thought the TIU had not
received.)

On to the next codeword – the one identified by Mike as a “Spacer”. In the speed commands above, it
is codeword 5666 or databyte 0x13. It seemed to never change as I looked at more commands. That
is, never until I changed the remote number and later, the TIU number. This byte is made up of two
pieces of information. The high order nybble is the TIU number (0 to 4 which corresponds to TIU 1 to
5), the low order nybble is the remote number (0 to 15).

So in my databyte of 0x13, I was using Remote 3 sending commands to TIU 2. In Mike's command
example from his video, he saw codeword 5555 which decodes to 0x00 – TIU 1 and Remote 0 (the
default values for those devices from the factory).

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

 The last step – the CRC

On to the last 2 codeword. Were they a CRC as identified by Mike?

I looked at hundreds of commands. These 2 codeword changed (what seemed like) randomly. A sure
sign that they were CRC. I considered they might be a simple Checksum but one bit changes in the
message caused complete perturbation of the these codeword as you would expect of a CRC and not
of a Checksum.

I was pretty sure this was a CRC.

I spent a lot of time on this over several years. I'm crazy, sorry. I generated spreadsheets and wrote
“C” language programs to generate and check CRC's. I tried dozens of CRC algorithms with no luck.

I found one document on the web by Ross Williams, titled “A Painless Guide to CRC Error Detection
Algorithms”-- it wasn't.

But it helped in one way – the paper describes what the author named the RockSoft™ Model
Algorithm for classifying CRC algorithms. Read that part because when I talk about the CRC below, it
will use terms from that paper.

I found a useful utility named RevEng . This utility could calculate dozens of different CRC
algorithms. For me, it confirmed over and over that I hadn't found the right CRC algorithm.

I found another great web page by Greg Ewing:

http://www.cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html

Greg presented a lot of insights in his paper. I won't repeat what he wrote except to summarize and
explain my results using his method. So follow along with his paper as I present my data.

He showed that CRC's "obey a kind of superposition principle. You can think of the CRC as being
made up of the exclusive-or of a set of component CRCs, each of which depends on just one bit in
the message.

He showed where, for the case of XorIn = XorOut = 0x0000, that:

C1 xor C2 = M1 xor M2
where: Cx = CRC Mx

Mx = equal length messages

He called "M1 xor M2" a difference message.

Greg wrote: "Then I got into a conversation with Patrick Maupin, who suggested a test that might help
to clarify whether it was a true CRC or not. Due to the superposition principle, if changing a message
by XORing it with a bit pattern B1 causes its CRC to change by C1, and another bit pattern B2
causes the CRC to change by C2, then XORing the message with (B1 xor B2) should change the
CRC by (C1 xor C2). If that doesn't happen, the algorithm can't be an ordinary CRC algorithm."

http://www.cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html
http://reveng.sourceforge.net/
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

Using these 4 commands from the remote to TIU bit stream:

 CRC
 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
M1 0x00 0x09 0x69 0x31 0x01 0x03 0x01 0xC2
M2 0x00 0x09 0x69 0x31 0x02 0x03 0xCC 0xE7
M3 0x00 0x09 0x69 0x31 0x03 0x03 0x77 0xFB
 ---- ---- ---- ---- ---- ---- ---- ----

Then,
 CRC
 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
B1 0x00 0x00 0x00 0x00 0x01 0x00
 ------------ XOR ------------
M1 0x00 0x09 0x69 0x31 0x01 0x03 0x01 0xC2

C1 = 0xDEBA xor 0xC201 = 0x1CBB

and another bit pattern B2 causes the CRC to change by C2,

 CRC
 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
B2 0x00 0x00 0x00 0x00 0x02 0x00
 ------------ XOR ------------
M2 0x00 0x09 0x69 0x31 0x02 0x03 0xCC 0xE7

C2 = 0xDEBA xor 0xE7CC = 0x3976

C1 xor C2 = 0x1CBB xor 0x3976 = 0x25CD

then XORing the packet with B3 = (B1 xor B2) should change the CRC by C3 = (C1 xor C2). If that
doesn't happen, the algorithm can't be an ordinary CRC algorithm.

 CRC
 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ----
B1 0x00 0x00 0x00 0x00 0x01 0x00
B2 0x00 0x00 0x00 0x00 0x02 0x00
 ------------ XOR ------------

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

B3 0x00 0x00 0x00 0x00 0x03 0x00

M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
B3 0x00 0x00 0x00 0x00 0x03 0x00
 ------------ XOR ------------
M3 0x00 0x09 0x69 0x31 0x03 0x03 0x77 0xFB

C3 = 0xDEBA xor 0xFB77 = 0x25CD

Does C3 == 0x25CD == C1 XOR C2 == 0x25CD ? Yes!

In the case of this serial stream, it happens so it must be an ordinary CRC algorithm.

Greg wrote: "Now consider two CRC values obtained from two 1-bit messages, where the 1 bits are
in adjacent positions. The resulting CRCs will differ by just one shift-xor cycle. To be precise, if C1
corresponds to the message with a 1 in position i, and C2 corresponds to the message with a 1 in
position i+1, then C1 is derived from applying one shift-xor cycle to C2. (If this seems backwards, it's
because the further the 1 bit is from the end of the message, the more shift-xor cycles get applied to
the CRC.)

There are two possibilities. If the leading bit of C2 (the one about to be shifted out) is 0, then C1 will
be equal to C2 shifted by one place. If it is 1, then C2 will be equal to C1 shifted one place and xored
with the polynomial."

I constructed several difference messages that differed in only one bit using the data captured over
the serial port:

 CRC
 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
M1 0x00 0x09 0x69 0x31 0x01 0x03 0x01 0xC2
 ---- ---- ---- ---- ---- ---- ---- ----
D01 0 0 0 0 0x01 0 0xBB 0x1C

 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
M2 0x00 0x09 0x69 0x31 0x02 0x03 0xCC 0xE7
 ---- ---- ---- ---- ---- ---- ---- ----
D02 0 0 0 0 0x02 0 0x76 0x39

 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
M3 0x00 0x09 0x69 0x31 0x04 0x03 0x56 0xAC
 ---- ---- ---- ---- ---- ---- ---- ----
D04 0 0 0 0 0x04 0 0xEC 0x72

 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

m8 0x00 0x09 0x69 0x31 0x08 0x03 0x62 0x3B
 ---- ---- ---- ---- ---- ---- ---- ----
D08 0 0 0 0 0x08 0 0xD8 0xE5

 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
M10 0x00 0x09 0x69 0x31 0x10 0x03 0x1B 0x1D
 ---- ---- ---- ---- ---- ---- ---- ----
D10 0 0 0 0 0x10 0 0xA1 0xC3

 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
M20 0x00 0x09 0x69 0x31 0x20 0x03 0xE9 0x51
 ---- ---- ---- ---- ---- ---- ---- ----
D20 0 0 0 0 0x20 0 0x53 0x8f

 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
M40 0x00 0x09 0x69 0x31 0x40 0x03 0x0D 0xC8
 ---- ---- ---- ---- ---- ---- ---- ----
D40 0 0 0 0 0x40 0 0xB7 0x16

 ---- ---- ---- ---- ---- ---- ---- ----
M0 0x00 0x09 0x69 0x31 0x00 0x03 0xBA 0xDE
M80 0x00 0x09 0x69 0x31 0x80 0x03 0xD4 0xF3
 ---- ---- ---- ---- ---- ---- ---- ----
D80 0 0 0 0 0x80 0 0x6e 0x2d

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

I came up with these CRC values for the difference messages with the byte shown:

Byte CRC (with byte swap to MSB-LSB order)
----- ----
01 1CBB
02 3976 LSB of CRC = 0
04 72EC LSB of CRC = 0
08 E5D8 LSB of CRC = 0
10 C3A1 LSB of CRC = 1
20 8F53 LSB of CRC = 1
40 16b7 LSB of CRC = 1
80 2d6e LSB of CRC = 0

Greg explained that when the LSB is a 0, the preceding CRC is one bit right shift of this CRC. If the
LSB is a 1 then the preceding CRC is the current CRC XOR'ed with the polynomial and then right
shifted.

Byte CRC shift xor Previous CRC
----- ---- ---- ---- ----
01 1CBB
02 3976 1CBB 0000 1CBB
04 72EC 3976 0000 3976
08 E5D8 72EC 0000 72EC
10 C3A1 61D0 8408 E5D8
20 8F53 47A9 8408 C3A1
40 16b7 0B5B 8408 8F53
80 2d6e 16B7 0000 16b7

This told me that the polynomial was 0x8408.

The next sentence paraphrases what Greg wrote: "The shifting direction indicates that the ReflectOut
parameter should be True, since shifting to the right is equivalent to using the canonical left-shifting
version of the algorithm with the polynomial 0x1021 and then reflecting the resulting CRC. It is
notable that 0x1021 is one of the standard 16-bit polynomials -- the one that is called "CRC-16-
CCITT"and also known as "KERMIT"."

So Greg's paper has helped me get pretty far along with my analysis. It sure looks like its a CRC and
its most likely CRC-16-CCITT or KERMIT (at least if init = XorOut = 0x0000).

But, of course, when I tried running my messages through RevEng and asking it to use the KERMIT
algorithm, the actual CRC's from the messages did not match what RevEng generated.

For example, using D01 message:

d:>reveng -c -m kermit 000000000100 returns d819

Greg's analysis of his problem indicated that there might some bytes included in the CRC calculation
that are not apparent. In Greg's case, he wrote : "I came up with the following idea. Start by initialising

http://reveng.sourceforge.net/

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

the register with the polynomial -- this corresponds to the state just after encountering the 1 in a 1-bit
difference message. Then run the algorithm and count the number of steps required before the
known CRC value is reached. Assuming it was eventually reached, that would tell me how many 0
bits following the 1 were included in the CRC."

So, I said maybe this would work for me. So I added 00 bytes to the end of message D01:

d:>reveng -c -m kermit 00000000010000 returns dc5a

d:>reveng -c -m kermit 0000000001000000 returns bb1c

WOW, 0xbb1c is the CRC value that I get when I xor the two actual CRC's from M0 and M1. (I can
add 0x00 bytes to the difference message if the actual bytes in the actual messages are the same
and are 0x00 after they are xor'ed into the difference message. And I need to remember that this
analysis still requires that init and XorOut are 0x0000 and that might not be case in the actual
algorithm.

So I spent about a year (I am really crazy) trying to find the value of the extra bytes. I wrote a program
which tried all combinations of extra bytes but I their values jumped all over. I'm going to leave out
everything I did trying to find the extra bytes. It was a dead end for me.

< Deleted here – a year of dead ends looking for 'extra bytes' as described by Greg.>

But I finally figured it out! This was November of 2014. Follow on....

Maybe I still didn't have the right data bytes in the right position or maybe the assumption that init =
XorOut = 0x0000 was not true.

So I decided to try more messages. I made up a bunch of messages where I could control the value
of the 2nd byte (the Engine number). Here are the messages that I was able to generate:

 CRC
 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x02 0x77 0x32 0x97 0x13 0x22 0x8D
 0x00 0x04 0x77 0x32 0x97 0x13 0x14 0xE8
 0x00 0x08 0x77 0x32 0x97 0x13 0x78 0x22
 0x00 0x10 0x77 0x32 0x97 0x13 0xB1 0xBE
 0x00 0x20 0x77 0x32 0x97 0x13 0x32 0x8F
 0x00 0x40 0x77 0x32 0x97 0x13 0x34 0xEC
 0x00 0x06 0x77 0x32 0x97 0x13 0x06 0xCB
 0x00 0x0A 0x77 0x32 0x97 0x13 0x6A 0x01
 0x00 0x12 0x77 0x32 0x97 0x13 0xA3 0x9D
 0x00 0x22 0x77 0x32 0x97 0x13 0x20 0xAC
 0x00 0x42 0x77 0x32 0x97 0x13 0x26 0xCF

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

And here are the difference messages:
 CRC
 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
M02a 0x00 0x02 0x77 0x32 0x97 0x13 0x22 0x8D
M03a 0x00 0x03 0x77 0x32 0x97 0x13 0xAB 0x9C
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
D01a 0x00 0x01 0x00 0x00 0x00 0x00 0x89 0x11

 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x04 0x77 0x32 0x97 0x13 0x14 0xE8
 0x00 0x06 0x77 0x32 0x97 0x13 0x06 0xCB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x02 0x00 0x00 0x00 0x00 0x12 0x23

 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x02 0x77 0x32 0x97 0x13 0x22 0x8D
 0x00 0x06 0x77 0x32 0x97 0x13 0x06 0xCB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x04 0x00 0x00 0x00 0x00 0x24 0x46

 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x02 0x77 0x32 0x97 0x13 0x22 0x8D
 0x00 0x0A 0x77 0x32 0x97 0x13 0x6A 0x01
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x08 0x00 0x00 0x00 0x00 0x48 0x8C

 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x02 0x77 0x32 0x97 0x13 0x22 0x8D
 0x00 0x12 0x77 0x32 0x97 0x13 0xA3 0x9D
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x10 0x00 0x00 0x00 0x00 0x81 0x10

 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x02 0x77 0x32 0x97 0x13 0x22 0x8D
 0x00 0x22 0x77 0x32 0x97 0x13 0x20 0xAC
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x20 0x00 0x00 0x00 0x00 0x02 0x21

 LSB MSB
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0x00 0x02 0x77 0x32 0x97 0x13 0x22 0x8D
 0x00 0x42 0x77 0x32 0x97 0x13 0x26 0xCF
 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

 0x00 0x40 0x00 0x00 0x00 0x00 0x04 0x42

Then I did the same analysis on the CRC words and came up with the same polynomial as before:
0x8408 or when shifted the other direction, 0x1021

Byte CRC (with byte swap to MSB-LSB order)
----- ----
0x01 1189
0x02 2312 LSB of CRC = 0
0x04 4624 LSB of CRC = 0
0x08 8C48 LSB of CRC = 0
0x10 1081 LSB of CRC = 1
0x20 2102 LSB of CRC = 0
0x40 4204 LSB of CRC = 0

Byte CRC shift XOR Previous CRC
----- ---- ---- ---- ----
0x01 1189
0x02 2312 1189 0000 1189
0x04 4624 2312 0000 2312
0x08 8C48 4624 0000 4624
0x10 1081 0840 8408 8C48
0x20 2102 1081 0000 1081
0x40 4204 2102 0000 2102

Here are all of the RockSoft™ CRC models with this poly, maybe I needed to think past KERMIT:

width=16 poly=0x1021 init=0x0000 refin=false refout=false xorout=0x0000 name="XMODEM"
width=16 poly=0x1021 init=0x0000 refin=true refout=true xorout=0x0000 name="KERMIT"
width=16 poly=0x1021 init=0x1d0f refin=false refout=false xorout=0x0000 name="CRC-16/AUG-CCITT"
width=16 poly=0x1021 init=0x89ec refin=true refout=true xorout=0x0000 name="CRC-16/TMS37157"
width=16 poly=0x1021 init=0xb2aa refin=true refout=true xorout=0x0000 name="CRC-16/RIELLO"
width=16 poly=0x1021 init=0xc6c6 refin=true refout=true xorout=0x0000 name="CRC-A"
width=16 poly=0x1021 init=0xffff refin=false refout=false xorout=0x0000 name="CRC-16/CCITT-FALSE"
width=16 poly=0x1021 init=0xffff refin=false refout=false xorout=0xffff name="CRC-16/GENIBUS"
width=16 poly=0x1021 init=0xffff refin=true refout=true xorout=0x0000 name="CRC-16/MCRF4XX"
width=16 poly=0x1021 init=0xffff refin=true refout=true xorout=0xffff name="X-25"

I noticed something with this newest set of messages. The two extra bytes were not needed to get
the correct CRC for the difference messages if I just used the first byte and left off the other 0x00
bytes. Using RevEng on message D01a:

D:>reveng -s -w 16 018911 width=16 poly=0x1021 init=0x0000 refin=true
refout=true xorout=0x0000 check=0x2189 name="KERMIT"

Then I realized that if I feed the original D01 message into the CRC generator in reverse byte order,
my original D01 message generated the correct CRC.

D:>reveng -c -m kermit 01000000 bb1c

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

So these bytes that I thought were extra bytes were really just bytes of the message but the
message was to be processed in reverse byte order.

Could this be true?

I took M02a and M03a, and fed them into RevEng in reverse byte order:

D:>reveng -s -w 16 1397327702228d

width=16 poly=0x1021 init=0xffff refin=true refout=true xorout=0x0000
check=0x6f91 name="CRC-16/MCRF4XX"

D:>reveng -s -w 16 1397327703ab9c

width=16 poly=0x1021 init=0xffff refin=true refout=true xorout=0x0000
check=0x6f91 name="CRC-16/MCRF4XX"

And what fell out amazed me, init was all ones and the algorithm had the same poly that I previously
found. The algorithm was from MCRF4xx communications (which now I see makes sense because
the RS-232 line that I'm tracing replaced an RF connection).

MCRF4xx is an RFID protocol. Google it.

The message is taken as one long set of bits so that the last byte is processed first and the first byte
is processed last. The 0x00 (sync) byte at the beginning of message is not used. With init = 0xFFFF,
the MCRF4xx algorithm will detect extra or missing leading zeros.

I tried this algorithm on a couple dozen of the messages and it gets the correct CRC every time.

Here is a snipit of code that I found at: https://gist.github.com/aurelj/270bb8af82f65fa645c1 originally
posted by “aurelj”:

#include <stdint.h>
#include <stddef.h>

uint16_t crc16_mcrf4xx(uint16_t crc, uint8_t *data, size_t len)
 {
 if (!data || len > 1) ^ 0x8408;
 else crc = (crc >> 1);
 }
 }
 return crc;
 }

Disclamer – I've not used the above code.

A web page on the RevEng site, points to some documents about MCRF4xx:
http://reveng.sourceforge.net/crc-catalogue/16.htm.

http://reveng.sourceforge.net/crc-catalogue/16.htm
https://gist.github.com/aurelj/270bb8af82f65fa645c1

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

I don't use the code snippet shown above but rather in my program, I use C code developed by Ross
Williams:

/**/
/* */
/* Author : Ross Williams (ross@guest.adelaide.edu.au.). */
/* Date : 3 June 1993. */
/* Status : Public domain. */
/* */
/* Description : This is the implementation (.c) file for the reference */

/* implementation of the Rocksoft™ Model CRC Algorithm. For more */

/* information on the Rocksoft™ Model CRC Algorithm, see the document */
/* titled "A Painless Guide to CRC Error Detection Algorithms" by Ross */
/* Williams (ross@guest.adelaide.edu.au.). This document is likely to be in */
/* "ftp.adelaide.edu.au/pub/rocksoft". */
/* */
/* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia. */
/* */
/**/

I've sent emails to both Ross and Greg thanking them for their help.

 The Interface

Mike's interface between the Remote and TIU allowed me to monitor the packets sent between the
Remote and TIU and to send packets to the TIU. You can see Mike's design in his three videos.

I designed a different interface that let me send packets to the TIU and read up the response from the
TIU.

You can see the complete design and variations by some of my alpha testers on my web page:

http://www.silogic.com/trains/RTC_Running.html

 Responses from the TIU

Once I could control trains, I started to look at the responses from the TIU. The responses used the
same 4B-8B DC balanced code with the intermediate Morton Numbers. That meant that I could
understand the bytes returned.

The overall format was very different from the packets sent to the TIU. Seems odd but maybe it
prevents packets being mistaken for each other.

The first response from the TIU are these 3 bytes which is the TIU saying that it got the command (I
call this the “OK” response):

55554D
 00

This might be a sync byte and an End of Transmission character.

http://www.silogic.com/trains/RTC_Running.html

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

For most commands, the TIU sends 8 encoded bytes or 4 binary bytes:

6696A5A65A5A5565
 63 F1 0F 10

It seems that the TIU->Remote channel protocol is not as “nice” as the other way. You have to know
how many characters are returned by each command to know if you got them all. For example, most
commands, as shown above, return 4 bytes.

For the 4 byte commands (which I call “ACK” or “NACK”):

1-2. the first two bytes are the CRC. Same encoding - MCRF4XX.
3. Next byte is the TIU/Remote byte.

For TIU V4.30 : Same encoding as the Remote to TIU command. Here TIU 1 and Remote 15.
For TIU V5.00 : The TIU number is returned as zero sometimes.

4. Some kind of acknowledgment byte. A “00” here might be an indication that the command failed.
0x10, 0x11 and 0x12 indicate a success. TIU V5.0 seems to have made this more consistent, 0x1X
indicates success with the second nybble being the TIU number that sent the response.

Some commands return longer responses. Here is a response from the 'x' command which returns 6
bytes:

A95555555A5A555555565555
 A8 00 0F 00 01 00

1-2. First two bytes are CRC
3. TIU/Remote
4. 0x00 more bytes coming
5. Byte Count of following data
6. One byte of data, in this case : Number of AIU, in binary

Here is a response to the 'q' command which returns 9 bytes:

9559A5A555655555555955555555A6599565
 84 F0 10 00 04 00 00 A6 90
59A5595A566655555559555555555AA6A9AA
 58 0D 13 00 04 00 00 5B FD

1-2. First two bytes are CRC
3. TIU/Remote (here its TIU 2 and Remote 0)
4. 0x00 more bytes coming
5. Byte Count of following data
6-9. 32 bits of data – (not to be discussed here but look at the web page which describes

how the ‘q’ command is used to read out the RAM in the engine)

If the 'q' command fails, you only get 4 bytes back with a 0x00 error indication in byte 4.

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

Maybe the response from the TIU is reversed from that sent by the Remote.

Command from Remote to TIU:
1. sync 0x5555 - always needed at the front
2. engine #
3. command
4. data bytes 0-X
5. sequence #
6. TIU/Remote
7. Two CRC bytes
8. 0x4D – EOT byte

The response from TIU to Remote:
1. sync 0x5555 - always needed at the front
2. 0x4D – EOT byte
3. Two CRC bytes
4. TIU/Remote
5. no sequence # - instead its some kind of command status flag

0x00 command failed ? – maybe engine not on track – NACK
0x01 with v5.00, this seems to be engine not on track
0x1X for command accepted and acted on - ACK

X = TIU Number sending the response (0-4) (not yet sure about this)
0x00 indicating data byte count and data bytes follow for commands that return data.

6. data byte count
7. data bytes 0-X

The bytes have to be swapped around in the typical unusual manner for the MCRF4XX CRC:

55554D -- these do not participate in the CRC
A9A995955666555555595555555556555955
 FC C0 13 00 04 00 00 02 08

c:\> reveng -c -m CRC-16/MCRF4XX 13000400000208c0fc

reveng returns 0000 indicating a good CRC

===
5555555A69A5AA5A5A5A6596996A4D
 00 05 78 AF 0F 61 9D
 'x' 'a'
55554D
 00
A95555555A5A555555565555
 A8 00 0F 00 01 00 -- this returns the number of AIU, 01 is byte count

5555555A6556A5655A5A99A956A94D
 00 05 21 B0 0F DC 56
 '!' 'V'

file:///C:/

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

55554D
 00
66A599695A5A555555596565656966665555
 72 9C 0F 00 04 30 34 33 00-- four bytes of data returned 30 34 33 00
 'r' '0' '4' '3' -- ASCII for TIU Version number (here its 4.3)

55555A55559965A69A656656A9996A564D
 00 0A 44 71 9A 23 EC 2B
 'D' 'q' '#' '+'
55554D
 00

A9695A6A66565555565555595655
 BC 1F 23 00 02 04 02 -- two bytes returned 0x04 and 0x02
 '#'

With no engines on track, we get a "00" response

5555555A65AA6569965555559A5959654D
 00 05 75 34 82 00 8E 18
 'u' '4'
55554D
 00
A5A5A96555555555
 F0 B8 00 00 -- last "00" is failure response

-- >reveng -c -m CRC-16/MCRF4XX 0000B8F0 - returns 0000

55555A5566A66565AA66566695AA9A964D
 00 0A 73 30 BB 13 D5 CB
 's' '0'
55554D
 00
9AA699A556565566
 DB D8 03 11 -- example of "11" response

55555A556599656596565555AA9556664D
 00 0A 64 30 83 00 EA 13
 'd' '0'
55554D
 00
A595696655555565
 E0 39 00 10 -- example of "10" response

-- reveng -c -m CRC-16/MCRF4XX 001039e0 - returns 0000

I've made some progress in understanding the responses from the TIU.

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

Here are some responses from the TIU:

Default: This response comes back from commands that don’t return any data. Every response
(not just this one) begins with 55554D.

55554D
 00
 ↓↓↓↓ TIU/Remote
A595696655555565 – A success response
 E0 39 00 10

"q" – query command

55554D
 00

59566665555555555559555555555555555A
 09 32 00 00 04 00 00 00 05

byte count is 4, the four bytes of data make a 32 bit word 0x00000005

"q" – query command

55554D
 00
 ↓↓↓↓ TIU/Remote
AA69695655655555555955556599A6596A59
 BE 29 10 00 04 00 64 A6 2E

byte count is 4, data is 0x0064A62E

"I0" - Interrogate Engines

55554D
 00

6656AA9A55555555595A5556
 23 EF 00 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 01

byte count is 13 (0x0D), the 13 data bytes indicate which engines are powered on.

"I1" - Interrogate Engine 0

55554D
 00

A5A5A96555555555
 F0 B8 00 00 -- I think this is a failure response

"x" - Number of AIU command

55554D
 00
 ↓↓↓↓ TIU/Remote
66699AA56A5A555555565556
 36 DA 2F 00 01 01 - one AIU

byte count is 1, data byte is 01 for one AIU present

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

"x" - Number of AIU command

55554D
 00
 ↓↓↓↓ TIU/Remote
6A96A5565A6A555555565555
 6B A1 1F 00 01 00 - no AIU

"!" - TIU Version Number command

55554D
 00
 ↓↓↓↓ TIU/Remote
55A569556A5A555555596565656A65656565
 50 28 2F 00 04 30 35 30 30 - version 5.00

byte count is 04, four data bytes are the version number in ASCII

"!" - TIU Version Number command

55554D
 00
 ↓↓↓↓ TIU/Remote
969A55AA5A6A555555596565656966665555
 C7 55 1F 00 04 30 34 33 00 - version 4.30

byte count is 04, four data bytes are the version number in ASCII

"m4" - Startup Command

55554D
 00
 ↓↓↓↓ TIU/Remote
5595A6965A5A5665
 40 E3 0F 12 - response from TIU 3

response is an ACK

"m4" - Startup Command

55554D
 00
 ↓↓↓↓ TIU/Remote
A5A6A56555555566
 F1 B0 00 11 - response from TIU 2

response is an ACK

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

"I5" - Interrogate Engine 5, I generally call this the “Ixxx” command.

55554D
 00

999959565555555556A5555A5596665956A6655556A656AA6566666565656565655566566566666565656965AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5556556595AA6A55
955555555555555555555555559A99696569A555555A5AA9A955555555555555555555
 CC 09 00 00 52 05 41 26 53 20 53 57 31 32 30 30 20 23 31 32 30 38
FF FF
FF FF FF FF FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00 02 60 BF 40
00 00 00 00 00 00 CE 38 78 00 0F FC 00 00 00 00 00

The byte count is 82 (0x52), the data bytes present a 16 byte ASCII engine name followed
by 32 bytes of 0xFF, followed by 26 bytes of hotkey information follow by 5 bytes of
unknown information. See spreadsheet “Command ('Ixxx') Response.xls” for details.

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

 The Command List

I used Mike's interface to enable me to look at packets that the Remote sent to the TIU. I started
pushing buttons on the Remote and looking at the ASCII commands generated.

Since I knew the commands were ASCII, I could figure out the meaning of most of the commands and
their responses.

I've made up names for each command, listed in column one of the table. That listing appears in
another document:

http://www.silogic.com/trains/RTC/Remote%20to%20TIU%20Command%20Set.pdf

 LashUp Commands DCS versions 2-3-4

The LashUp commands use a non-ASCII format. I will explain a little more about the LashUp
commands.

1. In LashUp command packets, the DCS engine# is always 0x66 (DCS #102).

2. A LashUp string is first created which lists all of the engines in the LashUp. This is a binary string
(and thus different from other commands which are all ASCII). The string contains up to 10 binary
numbers which are the DCS engine numbers. The first number is the head engine, the last number is
the tail engine, any in between numbers are middle engines. For example, for a two engine LashUp
consisting of engine 4 and engine 10, the string would be:

0x05 0x0B Using DCS #5 and #11 (Engines #4 and #10).

If the engine is run in reverse in the LashUp, turn on the high order bit in the engine number:

0x05 0x8B Using DCS #5 and #11 with engine #10 running in reverse.

There can be up to 8 middle engines. For example if we add engine #7 as a middle engine, running in
reverse, the string would be:

0x05 0x88 0x8B Using DCS #5, #8 and #11 with engines #7 and #10
running in reverse.

Then add a 0xFF byte to the end of the string to indicate the end of the LashUp:
 0x05 0x88 0x8B 0xFF

3. Once you create this string, you need to create the LashUp. Do this with the “U” command so that
the command part of the packet is:

“U” 0x05 0x88 0x8B 0xFF

http://www.silogic.com/trains/RTC/Remote%20to%20TIU%20Command%20Set.pdf

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

To this, prepend the sync byte and the LashUp DCS #102 (0x66) and append the sequence number,
the TIU/Remote byte, the CRC, and the EOT byte:

0x00 0x66 “U” 0x05 0x88 0x8B 0xFF “sequence#” “TIU/Remote#” “CRC Hi” “CRC Lo” 0x4D

Here is an actual example of a “U” command as created by the Remote. Then this can be sent to the
TIU to create the LashUp:

5555669955AA555A5A55AAAA9599555566999AAA4D
 00 66 55 05 0A FF C4 00 66 DF Lashup of Engines 4 and 9
 ‘U’

This example shows:
1. Sync byte of 00
2. DCS Engine # of 0x66 or 102
3. the ‘U’ command
4.the two engines in the LashUp, DCS #5 and #10 (Engine numbers #4 and #9).
5. the end of LashUp indicator 0xFF
6. 0xC4 was the sequence number of this packet
7. 0x00 which is the TIU#/Remote# (TIU #1 and Remote #0)
8. 0x66 and 0xDF – the calculated CRC

4. CRC is calculated the same way as any other command. The CRC covers the bytes of the
command packet from the DCS Engine #102 (0x66) through the TIU#/Remote# byte. Don't forget –
feed the command to the CRC algorithm in reverse byte order.

5. Once the LashUp is created, you can use it with any valid command. There is a slight difference
here from the ‘U’ command in that a “,” (a comma) or 0x2C needs to be inserted between the
command letters and the LashUp string. So for example, a startup command to the LashUp created
above would be:

5555669965AA65696959555A5A55AAAA959A555565A696564D
 00 66 75 34 2C 05 0A FF C5 00 71 83
 'u' '4' ',' startup LashUp 4 and 9

This example shows:
1. Sync byte of 00
2. DCS Engine # of 0x66 or 102
3. the ‘u4’ command
4. 0x2C – a comma ‘,’
5.the two engines in the LashUp, DCS #5 and #10 (Engine numbers #4 and #9).
6. the end of LashUp indicator 0xFF
7. 0xC5 was the sequence number of this packet
8. 0x00 which is the TIU#/Remote# (TIU #1 and Remote #0)
9. 0x71 and 0x83 – the calculated CRC

All of the commands to LashUps follow this format, including the ‘u5’ shutdown. You only have to
send one command to the TIU. The TIU will retransmit it automatically to all of the engines in the

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

LashUp (up to 10 Engines). The TIU automatically handles the head/middle/tail engines. For
example, if you blow the whistle, only the whistle of the head engine will actually sound.

For another example, here is a Direction command:

55556699659965666959555A5A55AAAA9A955555666A965A4D
 00 66 64 31 2C 05 0A FF CA 00 37 87
 'd' '1' ',' direction LashUp 4 and 9

6. To break up a LashUp, send the “m4” command to each engine in the normal way, that is, one
engine at a time. You may need to send a Feature Reset “F0” command to each engine as well but
I've not determined if that is needed.

 LashUp Commands DCS version5 and later

The LashUp commands also use an ASCII format. I will explain a little more about the LashUp
commands. DCS Version 5.0 effected a major change in the format for LashUp Commands. The
engine numbers, previously transmitted as binary are now converted to ASCII for transmission. The
RTC program uses the version number returned by the TIU to use either the old or new format.

1. In LashUp command packets, the DCS engine# is always 0x66 (DCS #102).

2. A LashUp string is first created which lists all of the engines in the LashUp. This is a ASCII string in
hexidecimal. The string contains up to 10 two digit hexidecimal numbers which are the DCS engine
numbers. The first two digit number is the head engine, the last two digit number is the tail engine,
any in between two digit numbers are middle engines. Engine numbers are always represented in
base 16 (hexidecimal) converted to two ASCII characters.

Engine #16 or DCS #17 would be represented by 0x11 which is 17 in hexidecimal.

For example, for a two engine LashUp consisting of engine 4 and engine 10, the string would be:

0511 (0x30 0x35 0x31 0x31) Using DCS #5 and #17 (Engines #4 and #16).

If the engine is run in reverse in the LashUp, turn on the high order bit in the engine number. That is,
for example, engine #16 would be DCS 17, in hex that is 0x11 which would become 0x91 which is
then represented in ASCII as 0x39 0x31:

0591 (0x30 0x35 0x39 0x31) Using DCS #5 and #17 with engine #17 running in reverse.

There can be up to 8 middle engines. For example if we add engine #7 as a middle engine, running in
reverse, the string would be:

058891 (0x30 0x35 0x38 0x38 0x39 0x31) Using DCS #5, #8 and #17 with engines #7 and
#17 running in reverse.

Then add a 0xFF byte to the end of the string to indicate the end of the LashUp:

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

 0x30 0x35 0x38 0x38 0x39 0x31 0xFF

3. Once you create this string, you need to create the LashUp. Do this with the “U” command so that
the command part of the packet is:

“U” 0x30 0x35 0x38 0x38 0x91 0x31 0xFF

To this, prepend the sync byte and the LashUp DCS #102 (0x66) and append the sequence number,
the TIU/Remote byte, the CRC, and the EOT byte:

0x00 0x66 “U” 0x30 0x35 0x38 0x38 0x91 0x31 0xFF “sequence#” “TIU#/Remote#” “CRC Hi”
“CRC Lo” 0x4D

Here is an actual example of a “U” command as created by the Remote. Then this can be sent to the
TIU to create the LashUp:

5555669955AA555A5A55AAAA9599555566999AAA4D
 00 66 55 05 0A FF C4 00 66 DF Lashup of Engines 4 and 9
 ‘U’

This example shows:
1. Sync byte of 00
2. DCS Engine # of 0x66 or 102
3. the ‘U’ command
4.the two engines in the LashUp, DCS #5 and #10 (Engine numbers #4 and #9).
5. the end of LashUp indicator 0xFF
6. 0xC4 was the sequence number of this packet
7. 0x00 which is the TIU#/Remote# (TIU #1 and Remote #0)
8. 0x66 and 0xDF – the calculated CRC

4. CRC is calculated the same way as any other command. The CRC covers the bytes of the
command packet from the DCS Engine #102 (0x66) through the TIU#/Remote# byte. Don't forget –
feed the command to the CRC algorithm in reverse byte order.

5. Once the LashUp is created, you can use it with any valid command. There is a slight difference
here from the ‘U’ command in that a “,” (a comma) or 0x2C needs to be inserted between the
command letters and the LashUp string. So for example, a play sound command to a LashUp of
engines #1 and #15 would be:

555566996A996569666669596565666565666565AAAA95A55A6AAAAA69594D
 00 66 6E 34 33 2C 30 32 31 30 FF D0 1F FF 2C
 'n' '4' '3' ',' '0' '2' '1' '0'

startup LashUp 1 and 15

This example shows:
1. Sync byte of 00
2. DCS Engine # of 0x66 or 102
3. the ‘u4’ command

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

4. 0x2C – a comma ‘,’
5.the two engines in the LashUp, DCS #2 and #16 (Engine numbers #1 and #15).
6. the end of LashUp indicator 0xFF
7. 0xD0 was the sequence number of this packet
8. 0x1F which is the TIU#/Remote# (TIU #2 and Remote #15)
9. 0xFF and 0x2C – the calculated CRC

All of the commands to LashUps follow this format, including the ‘u5’ shutdown. You only have to
send one command to the TIU. The TIU will retransmit it automatically to all of the engines in the
LashUp (up to 10 Engines). The TIU automatically handles the head/middle/tail engines. For
example, if you blow the whistle, only the whistle of the head engine will actually sound.

6. To break up a LashUp, send the “m4” command to each engine in the normal way, that is, one
engine at a time. You may need to send a Feature Reset “F0” command to each engine as well but
I've not determined if that is needed.

 Super TIU Mode

It appears that Super TIU Mode is signaled by turning on the high order bit of the TIU nybble in the
command. The actual TIU number remains in the 3 low order bits of the nybble. This is my best guess
right now. I don't have a layout that can make use of this so I have not been able to seriously test it.
My implementation includes all TIU into Super Mode. Feedback appreciated.

 Proof of Concept Program

I took all of what I learned and I wrote a program to control my trains from a PC. I've named the
program RTC for Remote Train Control. This program is written using a very old version of Borland
C++ Builder. I used this because I had experience with it back when I was working as a programmer.
C++ Builder is not really good at handling an asynchronous system as we see in RS-232 packets
coming back from TIU. The program occasionally crashes. But it does show what can be done.

You can see a video of my program and download the latest version on my web page at:

http://www.silogic.com/trains/RTC_Running.html

If you want to try your hand at enhancing my RTC program, I will send you the source code (or
maybe you are just interested in looking at it). I’ve ported the program to used the latest version
of what is now called the Embarcadero C++ v10.1. This version runs only on Windows 7,8 and 10.
Other component libraries that cost money are also required.

The RTC program source code is released under the terms of the GNU General Public License
version 3 or newer.

RTC requires either a wired or radio interface to the TIU. My original work was done with a wired
interface based on a design from Mike Hewett. After that, I developed a radio interface. You need to
build one or the other – I suggest the radio.

http://www.silogic.com/trains/RTC_Running.html

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

 The Wired Interface

The wired interface uses a simple interface circuit and telephone cables to connect the TIU to the PC.
Don’t use this, the radio works much better. Several versions of this interface are shown on my RTC
program web page:

http://www.silogic.com/trains/RTC_Running.html

 The Radio Interface

The wired interface was a less than optimal solution. I knew that developing a radio interface would
be much more difficult and it was. I finally succeeded.

Look on my web page for a write up of what I did for a radio interface.

http://www.silogic.com/trains/OOK_Radio_Support.html

http://www.silogic.com/trains/OOK_Radio_Support.html
http://www.silogic.com/trains/RTC_Running.html

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

 Translation Table – Databyte to Codeword

Databyte
Decimal

Databyte
Hex

Encoded
Binary

(Bitswap)
Encoded
Hex Codeword

0 0x00 00000000 0x00 5555
1 0x01 00000001 0x01 5556
2 0x02 00010000 0x10 5655
3 0x03 00010001 0x11 5656
4 0x04 00000010 0x02 5559
5 0x05 00000011 0x03 555A
6 0x06 00010010 0x12 5659
7 0x07 00010011 0x13 565A
8 0x08 00100000 0x20 5955
9 0x09 00100001 0x21 5956
10 0x0A 00110000 0x30 5A55
11 0x0B 00110001 0x31 5A56
12 0x0C 00100010 0x22 5959
13 0x0D 00100011 0x23 595A
14 0x0E 00110010 0x32 5A59
15 0x0F 00110011 0x33 5A5A
16 0x10 00000100 0x04 5565
17 0x11 00000101 0x05 5566
18 0x12 00010100 0x14 5665
19 0x13 00010101 0x15 5666
20 0x14 00000110 0x06 5569
21 0x15 00000111 0x07 556A
22 0x16 00010110 0x16 5669
23 0x17 00010111 0x17 566A
24 0x18 00100100 0x24 5965
25 0x19 00100101 0x25 5966
26 0x1A 00110100 0x34 5A65
27 0x1B 00110101 0x35 5A66
28 0x1C 00100110 0x26 5969
29 0x1D 00100111 0x27 596A
30 0x1E 00110110 0x36 5A69
31 0x1F 00110111 0x37 5A6A
32 0x20 01000000 0x40 6555
33 0x21 01000001 0x41 6556
34 0x22 01010000 0x50 6655
35 0x23 01010001 0x51 6656
36 0x24 01000010 0x42 6559
37 0x25 01000011 0x43 655A
38 0x26 01010010 0x52 6659
39 0x27 01010011 0x53 665A
40 0x28 01100000 0x60 6955

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

41 0x29 01100001 0x61 6956
42 0x2A 01110000 0x70 6A55
43 0x2B 01110001 0x71 6A56
44 0x2C 01100010 0x62 6959
45 0x2D 01100011 0x63 695A
46 0x2E 01110010 0x72 6A59
47 0x2F 01110011 0x73 6A5A
48 0x30 01000100 0x44 6565
49 0x31 01000101 0x45 6566
50 0x32 01010100 0x54 6665
51 0x33 01010101 0x55 6666
52 0x34 01000110 0x46 6569
53 0x35 01000111 0x47 656A
54 0x36 01010110 0x56 6669
55 0x37 01010111 0x57 666A
56 0x38 01100100 0x64 6965
57 0x39 01100101 0x65 6966
58 0x3A 01110100 0x74 6A65
59 0x3B 01110101 0x75 6A66
60 0x3C 01100110 0x66 6969
61 0x3D 01100111 0x67 696A
62 0x3E 01110110 0x76 6A69
63 0x3F 01110111 0x77 6A6A
64 0x40 00001000 0x08 5595
65 0x41 00001001 0x09 5596
66 0x42 00011000 0x18 5695
67 0x43 00011001 0x19 5696
68 0x44 00001010 0x0A 5599
69 0x45 00001011 0x0B 559A
70 0x46 00011010 0x1A 5699
71 0x47 00011011 0x1B 569A
72 0x48 00101000 0x28 5995
73 0x49 00101001 0x29 5996
74 0x4A 00111000 0x38 5A95
75 0x4B 00111001 0x39 5A96
76 0x4C 00101010 0x2A 5999
77 0x4D 00101011 0x2B 599A
78 0x4E 00111010 0x3A 5A99
79 0x4F 00111011 0x3B 5A9A
80 0x50 00001100 0x0C 55A5
81 0x51 00001101 0x0D 55A6
82 0x52 00011100 0x1C 56A5
83 0x53 00011101 0x1D 56A6
84 0x54 00001110 0x0E 55A9
85 0x55 00001111 0x0F 55AA
86 0x56 00011110 0x1E 56A9
87 0x57 00011111 0x1F 56AA
88 0x58 00101100 0x2C 59A5

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

89 0x59 00101101 0x2D 59A6
90 0x5A 00111100 0x3C 5AA5
91 0x5B 00111101 0x3D 5AA6
92 0x5C 00101110 0x2E 59A9
93 0x5D 00101111 0x2F 59AA
94 0x5E 00111110 0x3E 5AA9
95 0x5F 00111111 0x3F 5AAA
96 0x60 01001000 0x48 6595
97 0x61 01001001 0x49 6596
98 0x62 01011000 0x58 6695
99 0x63 01011001 0x59 6696
100 0x64 01001010 0x4A 6599
101 0x65 01001011 0x4B 659A
102 0x66 01011010 0x5A 6699
103 0x67 01011011 0x5B 669A
104 0x68 01101000 0x68 6995
105 0x69 01101001 0x69 6996
106 0x6A 01111000 0x78 6A95
107 0x6B 01111001 0x79 6A96
108 0x6C 01101010 0x6A 6999
109 0x6D 01101011 0x6B 699A
110 0x6E 01111010 0x7A 6A99
111 0x6F 01111011 0x7B 6A9A
112 0x70 01001100 0x4C 65A5
113 0x71 01001101 0x4D 65A6
114 0x72 01011100 0x5C 66A5
115 0x73 01011101 0x5D 66A6
116 0x74 01001110 0x4E 65A9
117 0x75 01001111 0x4F 65AA
118 0x76 01011110 0x5E 66A9
119 0x77 01011111 0x5F 66AA
120 0x78 01101100 0x6C 69A5
121 0x79 01101101 0x6D 69A6
122 0x7A 01111100 0x7C 6AA5
123 0x7B 01111101 0x7D 6AA6
124 0x7C 01101110 0x6E 69A9
125 0x7D 01101111 0x6F 69AA
126 0x7E 01111110 0x7E 6AA9
127 0x7F 01111111 0x7F 6AAA
128 0x80 10000000 0x80 9555
129 0x81 10000001 0x81 9556
130 0x82 10010000 0x90 9655
131 0x83 10010001 0x91 9656
132 0x84 10000010 0x82 9559
133 0x85 10000011 0x83 955A
134 0x86 10010010 0x92 9659
135 0x87 10010011 0x93 965A
136 0x88 10100000 0xA0 9955

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

137 0x89 10100001 0xA1 9956
138 0x8A 10110000 0xB0 9A55
139 0x8B 10110001 0xB1 9A56
140 0x8C 10100010 0xA2 9959
141 0x8D 10100011 0xA3 995A
142 0x8E 10110010 0xB2 9A59
143 0x8F 10110011 0xB3 9A5A
144 0x90 10000100 0x84 9565
145 0x91 10000101 0x85 9566
146 0x92 10010100 0x94 9665
147 0x93 10010101 0x95 9666
148 0x94 10000110 0x86 9569
149 0x95 10000111 0x87 956A
150 0x96 10010110 0x96 9669
151 0x97 10010111 0x97 966A
152 0x98 10100100 0xA4 9965
153 0x99 10100101 0xA5 9966
154 0x9A 10110100 0xB4 9A65
155 0x9B 10110101 0xB5 9A66
156 0x9C 10100110 0xA6 9969
157 0x9D 10100111 0xA7 996A
158 0x9E 10110110 0xB6 9A69
159 0x9F 10110111 0xB7 9A6A
160 0xA0 11000000 0xC0 A555
161 0xA1 11000001 0xC1 A556
162 0xA2 11010000 0xD0 A655
163 0xA3 11010001 0xD1 A656
164 0xA4 11000010 0xC2 A559
165 0xA5 11000011 0xC3 A55A
166 0xA6 11010010 0xD2 A659
167 0xA7 11010011 0xD3 A65A
168 0xA8 11100000 0xE0 A955
169 0xA9 11100001 0xE1 A956
170 0xAA 11110000 0xF0 AA55
171 0xAB 11110001 0xF1 AA56
172 0xAC 11100010 0xE2 A959
173 0xAD 11100011 0xE3 A95A
174 0xAE 11110010 0xF2 AA59
175 0xAF 11110011 0xF3 AA5A
176 0xB0 11000100 0xC4 A565
177 0xB1 11000101 0xC5 A566
178 0xB2 11010100 0xD4 A665
179 0xB3 11010101 0xD5 A666
180 0xB4 11000110 0xC6 A569
181 0xB5 11000111 0xC7 A56A
182 0xB6 11010110 0xD6 A669
183 0xB7 11010111 0xD7 A66A
184 0xB8 11100100 0xE4 A965

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

185 0xB9 11100101 0xE5 A966
186 0xBA 11110100 0xF4 AA65
187 0xBB 11110101 0xF5 AA66
188 0xBC 11100110 0xE6 A969
189 0xBD 11100111 0xE7 A96A
190 0xBE 11110110 0xF6 AA69
191 0xBF 11110111 0xF7 AA6A
192 0xC0 10001000 0x88 9595
193 0xC1 10001001 0x89 9596
194 0xC2 10011000 0x98 9695
195 0xC3 10011001 0x99 9696
196 0xC4 10001010 0x8A 9599
197 0xC5 10001011 0x8B 959A
198 0xC6 10011010 0x9A 9699
199 0xC7 10011011 0x9B 969A
200 0xC8 10101000 0xA8 9995
201 0xC9 10101001 0xA9 9996
202 0xCA 10111000 0xB8 9A95
203 0xCB 10111001 0xB9 9A96
204 0xCC 10101010 0xAA 9999
205 0xCD 10101011 0xAB 999A
206 0xCE 10111010 0xBA 9A99
207 0xCF 10111011 0xBB 9A9A
208 0xD0 10001100 0x8C 95A5
209 0xD1 10001101 0x8D 95A6
210 0xD2 10011100 0x9C 96A5
211 0xD3 10011101 0x9D 96A6
212 0xD4 10001110 0x8E 95A9
213 0xD5 10001111 0x8F 95AA
214 0xD6 10011110 0x9E 96A9
215 0xD7 10011111 0x9F 96AA
216 0xD8 10101100 0xAC 99A5
217 0xD9 10101101 0xAD 99A6
218 0xDA 10111100 0xBC 9AA5
219 0xDB 10111101 0xBD 9AA6
220 0xDC 10101110 0xAE 99A9
221 0xDD 10101111 0xAF 99AA
222 0xDE 10111110 0xBE 9AA9
223 0xDF 10111111 0xBF 9AAA
224 0xE0 11001000 0xC8 A595
225 0xE1 11001001 0xC9 A596
226 0xE2 11011000 0xD8 A695
227 0xE3 11011001 0xD9 A696
228 0xE4 11001010 0xCA A599
229 0xE5 11001011 0xCB A59A
230 0xE6 11011010 0xDA A699
231 0xE7 11011011 0xDB A69A
232 0xE8 11101000 0xE8 A995

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

233 0xE9 11101001 0xE9 A996
234 0xEA 11111000 0xF8 AA95
235 0xEB 11111001 0xF9 AA96
236 0xEC 11101010 0xEA A999
237 0xED 11101011 0xEB A99A
238 0xEE 11111010 0xFA AA99
239 0xEF 11111011 0xFB AA9A
240 0xF0 11001100 0xCC A5A5
241 0xF1 11001101 0xCD A5A6
242 0xF2 11011100 0xDC A6A5
243 0xF3 11011101 0xDD A6A6
244 0xF4 11001110 0xCE A5A9
245 0xF5 11001111 0xCF A5AA
246 0xF6 11011110 0xDE A6A9
247 0xF7 11011111 0xDF A6AA
248 0xF8 11101100 0xEC A9A5
249 0xF9 11101101 0xED A9A6
250 0xFA 11111100 0xFC AAA5
251 0xFB 11111101 0xFD AAA6
252 0xFC 11101110 0xEE A9A9
253 0xFD 11101111 0xEF A9AA
254 0xFE 11111110 0xFE AAA9
255 0xFF 11111111 0xFF AAAA

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

 Translation Table – Codeword to Databyte

Codeword
Encoded
Hex

Encoded
Binary

(Bitswap)
Databyte
Hex

Databyte
Decimal

5555 0x00 00000000 0x00 0
5556 0x01 00000001 0x01 1
5559 0x02 00000010 0x04 4
555A 0x03 00000011 0x05 5
5565 0x04 00000100 0x10 16
5566 0x05 00000101 0x11 17
5569 0x06 00000110 0x14 20
556A 0x07 00000111 0x15 21
5595 0x08 00001000 0x40 64
5596 0x09 00001001 0x41 65
5599 0x0A 00001010 0x44 68
559A 0x0B 00001011 0x45 69
55A5 0x0C 00001100 0x50 80
55A6 0x0D 00001101 0x51 81
55A9 0x0E 00001110 0x54 84
55AA 0x0F 00001111 0x55 85
5655 0x10 00010000 0x02 2
5656 0x11 00010001 0x03 3
5659 0x12 00010010 0x06 6
565A 0x13 00010011 0x07 7
5665 0x14 00010100 0x12 18
5666 0x15 00010101 0x13 19
5669 0x16 00010110 0x16 22
566A 0x17 00010111 0x17 23
5695 0x18 00011000 0x42 66
5696 0x19 00011001 0x43 67
5699 0x1A 00011010 0x46 70
569A 0x1B 00011011 0x47 71
56A5 0x1C 00011100 0x52 82
56A6 0x1D 00011101 0x53 83
56A9 0x1E 00011110 0x56 86
56AA 0x1F 00011111 0x57 87
5955 0x20 00100000 0x08 8
5956 0x21 00100001 0x09 9
5959 0x22 00100010 0x0C 12
595A 0x23 00100011 0x0D 13
5965 0x24 00100100 0x18 24
5966 0x25 00100101 0x19 25
5969 0x26 00100110 0x1C 28
596A 0x27 00100111 0x1D 29
5995 0x28 00101000 0x48 72

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

5996 0x29 00101001 0x49 73
5999 0x2A 00101010 0x4C 76
599A 0x2B 00101011 0x4D 77
59A5 0x2C 00101100 0x58 88
59A6 0x2D 00101101 0x59 89
59A9 0x2E 00101110 0x5C 92
59AA 0x2F 00101111 0x5D 93
5A55 0x30 00110000 0x0A 10
5A56 0x31 00110001 0x0B 11
5A59 0x32 00110010 0x0E 14
5A5A 0x33 00110011 0x0F 15
5A65 0x34 00110100 0x1A 26
5A66 0x35 00110101 0x1B 27
5A69 0x36 00110110 0x1E 30
5A6A 0x37 00110111 0x1F 31
5A95 0x38 00111000 0x4A 74
5A96 0x39 00111001 0x4B 75
5A99 0x3A 00111010 0x4E 78
5A9A 0x3B 00111011 0x4F 79
5AA5 0x3C 00111100 0x5A 90
5AA6 0x3D 00111101 0x5B 91
5AA9 0x3E 00111110 0x5E 94
5AAA 0x3F 00111111 0x5F 95
6555 0x40 01000000 0x20 32
6556 0x41 01000001 0x21 33
6559 0x42 01000010 0x24 36
655A 0x43 01000011 0x25 37
6565 0x44 01000100 0x30 48
6566 0x45 01000101 0x31 49
6569 0x46 01000110 0x34 52
656A 0x47 01000111 0x35 53
6595 0x48 01001000 0x60 96
6596 0x49 01001001 0x61 97
6599 0x4A 01001010 0x64 100
659A 0x4B 01001011 0x65 101
65A5 0x4C 01001100 0x70 112
65A6 0x4D 01001101 0x71 113
65A9 0x4E 01001110 0x74 116
65AA 0x4F 01001111 0x75 117
6655 0x50 01010000 0x22 34
6656 0x51 01010001 0x23 35
6659 0x52 01010010 0x26 38
665A 0x53 01010011 0x27 39
6665 0x54 01010100 0x32 50
6666 0x55 01010101 0x33 51
6669 0x56 01010110 0x36 54
666A 0x57 01010111 0x37 55
6695 0x58 01011000 0x62 98

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

6696 0x59 01011001 0x63 99
6699 0x5A 01011010 0x66 102
669A 0x5B 01011011 0x67 103
66A5 0x5C 01011100 0x72 114
66A6 0x5D 01011101 0x73 115
66A9 0x5E 01011110 0x76 118
66AA 0x5F 01011111 0x77 119
6955 0x60 01100000 0x28 40
6956 0x61 01100001 0x29 41
6959 0x62 01100010 0x2C 44
695A 0x63 01100011 0x2D 45
6965 0x64 01100100 0x38 56
6966 0x65 01100101 0x39 57
6969 0x66 01100110 0x3C 60
696A 0x67 01100111 0x3D 61
6995 0x68 01101000 0x68 104
6996 0x69 01101001 0x69 105
6999 0x6A 01101010 0x6C 108
699A 0x6B 01101011 0x6D 109
69A5 0x6C 01101100 0x78 120
69A6 0x6D 01101101 0x79 121
69A9 0x6E 01101110 0x7C 124
69AA 0x6F 01101111 0x7D 125
6A55 0x70 01110000 0x2A 42
6A56 0x71 01110001 0x2B 43
6A59 0x72 01110010 0x2E 46
6A5A 0x73 01110011 0x2F 47
6A65 0x74 01110100 0x3A 58
6A66 0x75 01110101 0x3B 59
6A69 0x76 01110110 0x3E 62
6A6A 0x77 01110111 0x3F 63
6A95 0x78 01111000 0x6A 106
6A96 0x79 01111001 0x6B 107
6A99 0x7A 01111010 0x6E 110
6A9A 0x7B 01111011 0x6F 111
6AA5 0x7C 01111100 0x7A 122
6AA6 0x7D 01111101 0x7B 123
6AA9 0x7E 01111110 0x7E 126
6AAA 0x7F 01111111 0x7F 127
9555 0x80 10000000 0x80 128
9556 0x81 10000001 0x81 129
9559 0x82 10000010 0x84 132
955A 0x83 10000011 0x85 133
9565 0x84 10000100 0x90 144
9566 0x85 10000101 0x91 145
9569 0x86 10000110 0x94 148
956A 0x87 10000111 0x95 149
9595 0x88 10001000 0xC0 192

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

9596 0x89 10001001 0xC1 193
9599 0x8A 10001010 0xC4 196
959A 0x8B 10001011 0xC5 197
95A5 0x8C 10001100 0xD0 208
95A6 0x8D 10001101 0xD1 209
95A9 0x8E 10001110 0xD4 212
95AA 0x8F 10001111 0xD5 213
9655 0x90 10010000 0x82 130
9656 0x91 10010001 0x83 131
9659 0x92 10010010 0x86 134
965A 0x93 10010011 0x87 135
9665 0x94 10010100 0x92 146
9666 0x95 10010101 0x93 147
9669 0x96 10010110 0x96 150
966A 0x97 10010111 0x97 151
9695 0x98 10011000 0xC2 194
9696 0x99 10011001 0xC3 195
9699 0x9A 10011010 0xC6 198
969A 0x9B 10011011 0xC7 199
96A5 0x9C 10011100 0xD2 210
96A6 0x9D 10011101 0xD3 211
96A9 0x9E 10011110 0xD6 214
96AA 0x9F 10011111 0xD7 215
9955 0xA0 10100000 0x88 136
9956 0xA1 10100001 0x89 137
9959 0xA2 10100010 0x8C 140
995A 0xA3 10100011 0x8D 141
9965 0xA4 10100100 0x98 152
9966 0xA5 10100101 0x99 153
9969 0xA6 10100110 0x9C 156
996A 0xA7 10100111 0x9D 157
9995 0xA8 10101000 0xC8 200
9996 0xA9 10101001 0xC9 201
9999 0xAA 10101010 0xCC 204
999A 0xAB 10101011 0xCD 205
99A5 0xAC 10101100 0xD8 216
99A6 0xAD 10101101 0xD9 217
99A9 0xAE 10101110 0xDC 220
99AA 0xAF 10101111 0xDD 221
9A55 0xB0 10110000 0x8A 138
9A56 0xB1 10110001 0x8B 139
9A59 0xB2 10110010 0x8E 142
9A5A 0xB3 10110011 0x8F 143
9A65 0xB4 10110100 0x9A 154
9A66 0xB5 10110101 0x9B 155
9A69 0xB6 10110110 0x9E 158
9A6A 0xB7 10110111 0x9F 159
9A95 0xB8 10111000 0xCA 202

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

9A96 0xB9 10111001 0xCB 203
9A99 0xBA 10111010 0xCE 206
9A9A 0xBB 10111011 0xCF 207
9AA5 0xBC 10111100 0xDA 218
9AA6 0xBD 10111101 0xDB 219
9AA9 0xBE 10111110 0xDE 222
9AAA 0xBF 10111111 0xDF 223
A555 0xC0 11000000 0xA0 160
A556 0xC1 11000001 0xA1 161
A559 0xC2 11000010 0xA4 164
A55A 0xC3 11000011 0xA5 165
A565 0xC4 11000100 0xB0 176
A566 0xC5 11000101 0xB1 177
A569 0xC6 11000110 0xB4 180
A56A 0xC7 11000111 0xB5 181
A595 0xC8 11001000 0xE0 224
A596 0xC9 11001001 0xE1 225
A599 0xCA 11001010 0xE4 228
A59A 0xCB 11001011 0xE5 229
A5A5 0xCC 11001100 0xF0 240
A5A6 0xCD 11001101 0xF1 241
A5A9 0xCE 11001110 0xF4 244
A5AA 0xCF 11001111 0xF5 245
A655 0xD0 11010000 0xA2 162
A656 0xD1 11010001 0xA3 163
A659 0xD2 11010010 0xA6 166
A65A 0xD3 11010011 0xA7 167
A665 0xD4 11010100 0xB2 178
A666 0xD5 11010101 0xB3 179
A669 0xD6 11010110 0xB6 182
A66A 0xD7 11010111 0xB7 183
A695 0xD8 11011000 0xE2 226
A696 0xD9 11011001 0xE3 227
A699 0xDA 11011010 0xE6 230
A69A 0xDB 11011011 0xE7 231
A6A5 0xDC 11011100 0xF2 242
A6A6 0xDD 11011101 0xF3 243
A6A9 0xDE 11011110 0xF6 246
A6AA 0xDF 11011111 0xF7 247
A955 0xE0 11100000 0xA8 168
A956 0xE1 11100001 0xA9 169
A959 0xE2 11100010 0xAC 172
A95A 0xE3 11100011 0xAD 173
A965 0xE4 11100100 0xB8 184
A966 0xE5 11100101 0xB9 185
A969 0xE6 11100110 0xBC 188
A96A 0xE7 11100111 0xBD 189
A995 0xE8 11101000 0xE8 232

PC Control of MTH Engines by Serial Connection to the TIU
 14. Sep. 2020

A996 0xE9 11101001 0xE9 233
A999 0xEA 11101010 0xEC 236
A99A 0xEB 11101011 0xED 237
A9A5 0xEC 11101100 0xF8 248
A9A6 0xED 11101101 0xF9 249
A9A9 0xEE 11101110 0xFC 252
A9AA 0xEF 11101111 0xFD 253
AA55 0xF0 11110000 0xAA 170
AA56 0xF1 11110001 0xAB 171
AA59 0xF2 11110010 0xAE 174
AA5A 0xF3 11110011 0xAF 175
AA65 0xF4 11110100 0xBA 186
AA66 0xF5 11110101 0xBB 187
AA69 0xF6 11110110 0xBE 190
AA6A 0xF7 11110111 0xBF 191
AA95 0xF8 11111000 0xEA 234
AA96 0xF9 11111001 0xEB 235
AA99 0xFA 11111010 0xEE 238
AA9A 0xFB 11111011 0xEF 239
AAA5 0xFC 11111100 0xFA 250
AAA6 0xFD 11111101 0xFB 251
AAA9 0xFE 11111110 0xFE 254
AAAA 0xFF 11111111 0xFF 255

