UP-7544

UNIYAC 1108 ALGOL

SECTION: PAGE:

«

9.1.

9.2.

9. INPUT/OUTPUT

GENERAL

Input and output operations are accomplished in UNIVAC 1108 ALGOL by means of
library procedures. The two main ones, READ and WRITE, are more flexible than
ordinary procedures written in ALGOL because the number of parameters in an actual
call or even the order of the parameters is not rigidly specified. In general, when doing
I/0 with other than cards or printer, recursive calls should be avoided. An important
feature of the I/0 is that there are degrees of complexity that can be used. It is very
simple to insert statements into the ALGOL program just to dump a few variables when
debugging. More refined output for a working program can be done later.

The two other important I/0 procedures, POSITION and REWIND, are concerned ex-
clusively with magnetic tape and tape-simulated drum operations.

FREE-FORMAT OUTPUT ON PRINTER AND CARD PUNCH

Arrays and values of expressions can be printed by simply calling the WRITE procedure
in the following way:

WRITE(PRINTER, v1,v), ..., Vp)

where each v; is an expression or an array identifier. In a similar manner, if the output
is to be punched, the call is:

WRITE(PUNCH, Vir Voo ooy V)

PRINTER and PUNCH are device names which specify the output unit to be used. If
no device is named, PRINTER is assumed:

WRITE(vy, vp, « « -, V)
In the following description the word ‘print’ v is used in discussing the action of

WRITE, but the word ‘punch’ may be substituted. Significant differences between the
two devices are noted.

The action of WRITE is to evaluate the expressions in the order they are listed in the
call and print their values in the following manner: except for string expressions, 10
values are printed on each line (6 per card if punching). Each value occupies a field
of 12 character positions or columns. If the actual parameter is an array it is decom-
posed by columns. Each occurrence of WRITE begins printing on a new line.

UP-7544 UNIVAC 1108 ALGOL Sk R

Examples:

REAL ARRAY A(1:10) %

WRITE(PRINTER»A)S

acts the same as
WRITE(PRINTERrA{L)pA(2)reesrA({10))

For multidimensional arrays the decomposition is such that the leftmost subscript varies
most frequently. Thus the sequence

BOOLEAN ARRAY A(1:2.1:2¢1:2) %

WRITE(PRINTEReA) $

acts like

WRITE(PRINTEReA(Lelre1) rAC(2e1p1)rAlLle201)pA(24s201)0
A{L1e1e2)eA(20102)0A(10202)0A(29202)) B

The expression or array element is printed in a form consistent with its type.

Type Form
INTEGER Integer form, right justified in the field. Includes a leading
minus if the expression is negative. Leading zeros are not
printed.

REAL and REAL 2 Both types are printed right justified in the form X.XXXX,fNN,
where NN represents the power of ten. If the number is negative,
NN is preceded by a minus sign.

BOOLEAN Either TRUE or FALSE is left justified in the field.
COMPLEX The real and imaginary parts are each given a field as for REAL.

Thus, only five expressions of type COMPLEX can be printed on
the same line.

Strings are a slight exception in that they always start a new line. Whenever a string
expression occurs as a parameter, the previous expressions, whether their number is a
multiple of 10 or not, are printed. Then the string is printed on a new line. The next
parameter will be printed on the following line. For example, if A and B are REAL
and have the values 7.0 and 0.004 respectively, then the statement

WRITE(*A='"yA»"B='»Br*A OVER R'rA/B)

UP-7544 I UNIVAC 1108 ALGOL N -

. would produce the following lines on the printer:

A=

7.0600» 0O
B=
4.,0000,=03
A OVER B
1,7500¢ 03

Example:

INTEGER ARRAY A(1:15) %
BOOLEAN ARRAY B(1:2:1:2) %
INTEGER I¢d %

FOR I=(1¢1,15)DO0 A(I)=I-2 %
FOR I=(1r1s2) DO FOR J=(1¢1¢2) DO B(I»J)=I GEG J %
WRITE(*VECTOR A'»A»"MATRIX B'sB) %

produces the following output:

VECTOR A
‘l' -2 -1 0 1 2 3
8 9 10 11 12 13
MATRIX B
TRUE TRUE FALSE TRUE
e e e e e SR
12 12 12 12 12 12

9.3. FREE-FORMAT INPUT FROM CARDS

For reading punched cards in free-format mode, the procedure READ is called with
device CARDS:

READ(CARDS, v{,v9, .-+, vp)

where each vj is a variable or array identifier. Again, if no device is written, CARDS

is assumed:

READ(vy, vp, + « « vn)

This procedure reads the next input card and scans the information on it. Each con-
stant on the card is assigned to the next parameter in the order it appears in the call.

_UP-7544 UNIVAC 1108 ALGOL SEC TION: PAGE:

Arrays are handled in the same manner as for WRITE. Constants on the cards must be ‘
punched in the same form as they appear in the ALGOL source language (see 2.3) with

the exception that a comma(,) may be used in place of the ampersand (&). Constants

on a card are delimited by one or more blanks and by the end of the card. Therefore,

there is no restriction as to where a constant may appear on the card. If there is not

enough information on the first card to satisfy the READ procedure, a second card is

read, and so on. Any information not taken from the last card is lost (i.e., the next

call to READ reads a new card). An * punched on a card causes the remainder of the

card to be ignored. Otherwise, all 80 columns of the card are scanned for information.

An example of a call on READ:

REAL AfrB %
INTEGER COUNTER %

READ(CARDS+A»BrCOUNTER) %

Data Card

assigns the values —7.2 to A, .099 to B and 362236 to COUNTER. It is not necessary
for the type of the constant on the card to match the type of the actual parameter.
Transfer functions are used automatically if such functions are defined (see Appendix

B).

9.4. LIST PARAMETERS — THE LIST DECLARATION

It is possible to supply more general kinds of parameters to the READ and WRITE
procedures than those we have mentioned in Sections 1 and 2. The following example
is a method for printing only the third row of a two dimensional matrix A:

REAL ARRAY A(1:INe13IN) %
INTEGER I %

FOR I=(1s1eN) DO WRITE (A(3eI)) %

It can also be done the othet way around:

WRITE (FOR I=(1s1+N) DO A(3r1)) %

which has the same effect, except for the paper spacing. The parameter defined by the
statement

FOR I=(1r1sN) DO A(3,1)

UP-7544

UNIVAC 1108 ALGOL SECTION: PAGE:

is called a list and is acceptable any time as a parameter to READ or WRITE. This
construction can be used as an actual parameter to any procedure (the formal parameter
specified as LIST), but ultimately can be used only by a procedure outside the ALGOL
language such as READ or WRITE which are in assembly language. The procedure

MAX and MIN can also be called with this type of list parameter. As would be expected,
the FOR clauses in a list can be nested:

REAL ARRAY A(1:Ne1IN) %
INTEGER Ird %

READ (FOR I=(1s1sN) DO FOR J=(1lr1eN) DO A(IrJ)) %
reads a matrix from cards by rows instead of the usual columns.

The elements of the matrix could be printed in like manner with the same parameter
used to call the WRITE procedure:

WRITE (FOR I=(1r1eN) DO FOR J=(1s1eN) DO A(I,J))

but this is laborious. The LIST declaration is for this purpose:

REAL ARRAY A(1:iNvr1:N) %
INTEGER Ied %
LIST L1(FOR I=(1s1»N) DO FOR J=(1¢1sN) DO A(TIrJ)) %

READI(LL) %
WRITE(LL) %

The LIST declaration, like all declarations, must be placed at the beginning of a block.
A LIST merely defines an ordered sequence of expressions:

REAL X¢XY %

INTEGER WIDDLE %

BOOLEAN ARRAY Q (1:10) %

STRING BEAN (36%5) %

INTEGER I %

LIST L{le0sXeXYrFOR IZ(1+91¢5)DO(O(I)FBEAM(36%(I=1)+1,36)),
SQRT(WIDDLE**3)) $

The LIST L defines the following sequence of expressions:

1.0 X XY Q(1) BEAN(1¢36) Q(2) BEAN(37¢36) Q(3) BEAN(73+36)
Q(4) BEAN(109,36) Q(5) BEAN(145r36) SORT(WIDDLE**3)

UP-7544

UNIVAC 1108 ALGOL

SECTION: PAGE:

Note that the LIST defines only the expressions; the values are not defined until the
LIST is activated (that is, until it is actually used in a procedure call). The identifiers
used in the expression must be defined prior to their inclusion in the LIST declaration.
Thus, the other declarations should precede the LIST declaration.

A LIST may contain as elements the following three things, separated by commas:

B Expressions

B Array identifiers

m Lists defined by FOR clauses

It should be noted that BEGIN and END cannot be used to group expressions in a LIST
defined by a FOR clause. Only left and right parentheses are permitted.

Permissible output parameters to a WRITE procedure are:

B An expression
B An array identifier
m A LIST identifier

B A LIST defined by FOR clauses

The above are also permissible parameters to the READ procedure with the restriction
that only variables, not general expressions, can be parameters to READ. This applies
also to lists being used as parameters to READ. The parameters to READ are really
call-by-name parameters and occur on the left-hand side of assignment statements. Thus,
they must be variables.

This section is concluded with a warning conceming the use of a LIST. Do not use an
iterated variable of a FOR list as an iterated variable of a FOR statement with the acti-
vation of the LIST within its scope:

INTEGER I %
ARRAY ARGGGHA (1:10) %
LIST LISP(FOR I=10 STEP =1 UNTIL 1 DO ARGGGHA(I)) $

FOR I=(1e2s47)DO
BEGIN

WRITE (LISP) $

END %

This program is semantically incorrect. This type of error can be particularly difficult
to isolate.

UP-7544 ‘

UNIVAC 1108 ALGOL l

SECTION: PAGE:

9.5.

FORMATTED OUTPUT — THE FORMAT DECLARATION

It is often desitable to print or punch information in a specific manner rather than to
accept the positioning automatically provided by the WRITE procedure.

The FORMAT declaration, which is included with the other declarations at the beginning
of the block, provides a means of specifying how a printed page (or punched card) is to
be formatted. A format is a set of specifications that can be interpreted by the I/0
procedures to control the editing of information. The format takes this form:

FORMAT < identifier> (<format specifications>)
The following lines specify two formats, FEIN and FTWAIN:

FORMAT FEIN(X10¢DT7e2¢X5¢R17e8¢A1,1)¢
FTWAIN(BO:S102I5¢X2e T1U.9,A3rE)S

A single format identifier may be included as a parameter in a call on WRITE, but its
position in the call does not matter. For example, the two following calls in WRITE
are equivalent.

REAL ArB %

®

WRITE(PRINTEReFEINsArB)S
WRITE(ArBrFEIN)S

A format specification consists of a series of editing and/or nonediting codes separated
by commas. An editing code corresponds to a value to be printed and specifies how the
value is to be edited. A nonediting code controls printing, spacing or insertion of blanks
or constants into the print line. The action of WRITE, when a format is being used, is

to pair each output expression with its corresponding editing code in the format. Non-
editing codes are executed as they are encountered.

SECTION: PAGE:

UP-7544 UNIVAC 1108 ALGOL

9.5.1. Nonediting Codes

In nonediting codes listed below, s and t are unsigned integers and w indicates the
number of character positions. Two conventions are that As is the same as As.0
and A is the same as A0.0, For phases that require a t, both s and t must be less
than 64.

FORMAT CODE ACTION(PRINTER) ACTION(PUNCH)

As.t Activate Prints the line just Punches the edited
(Each format | edited. Skip s lines line into a card.

statement before printing and s and t are ignored.
must end t lines after.
with this)

Es Eject Ejects the page to Ignored
logical line s-1 if

s-1 is below margin

on current page. The
next line to be printed,
if it specifies Al.t,
prints on line s. If s-1
is on the current page
and is below the cur-
rent line, Es skips to
s-1 and the page is not
ejected.

Xw Expunge Skips the next w char- Same
acter positions (i.e.,
inserts w blanks in the
line).

'< any Insert Inserts the string Same
string literal enclosed in quotes
not con- into the line.
taining a
!>'I

Table 9—-1. Output Nonediting Codes

UP-7544

UNIVAC 1108 ALGOL SECTION: PAGE:

9.5.2,

Editing Codes

The editing codes are the same for both printing and punching. Each code acts on
one value to be printed. The w specifies the field width (that is, the total number

of character positions to be used in the editing, including signs, decimal points, and
comma). If wis too small to do the proper editing, the whole field is filled with
asterisks (*). Any editing done beyond the edge of the output medium (132 or 128
columns on the printer, 80 columns on the card punch) is lost. The d is interpreted
differently for different phrases. In format codes that use no d (as Sw), w must be
smaller than 4096. In codes that include d, w must be enough larger than d to include
at least the decimal point, a sign, and the exponent with its sign if there is one.

FORMAT CODE ACTION

Bw Boolean Prints TRUE or FALSE in the field, left justified. If the field
is too short as much as possible is printed, e.g., B1 results in
T or F.

Dw.d Decimal Prints a decimal number with d places after the decimal point,
right justified in the field, and with a leading minus sign if
negative.

Iw.d Integer Prints an integer number right justified in the field with a
leading minus sign if negative. The integer is printed to the
base d where d=0 and d=10 are equivalent. In the latter cases
the .d can be omitted. Range of d: 2 < d < 10.

Rw.d Real Prints d significant digits of a REAL or REAL 2 variable in
the form X.X. X, NN. A leading minus sign is printed

if the number is negative. If the power of ten, NN, is negative,
it is preceded by a minus sign. Note that w must always ex-
ceed d by 6 or more to allow for £ ., £ NN.

SwW String Prints the first w characters of a string left justified in the
field. If the string is shorter than w characters, the rest of
the field is space filled.

Tw.d Truncated Prints a number with a decimal point right justified in the
field. Only the first d significant digits are printed; a leading
minus sign is printed if negative.

Table 9-2. Output Editing Codes

The type of the actual parameter is transferred to the type demanded by the editing
code in any case for which there are transfer functions defined. A complex number
is edited using two successive editing codes, the first for the real part and the

_second for the imaginary part.

UP-7544

UNIVAC 1108 ALGOL l

SECTION:

PAGE:

10

The following examples illustrate the use of various editing codes:

REAL Ae!B %
FORMAT F1l(X2¢D7e2¢X5¢rR17.8¢rA1.1) %

A=T2.474 %
B==,12345678 %
WRITE(F1.A,B) %

The above coding would print A and B as follows:

(X2¢ D762 X5¢ R17.8¢ Al.l) %

SN i —]

AAAAT2 UTAAAAAALA=]L23U5678r=01

1 blank line -=—

If F1 above were

FLO'A='» D7+2¢ X5¢ *B='sy R17.8r A2.1)
7 <~ 7

then the printout would be 2 blank lines -—t—f

A A
AZAATZ2 4T7AMMAAB=AAA=L 42345678, =01

1 blank line —-—d

To compare the three real codes D, R and T, suppose

REAL A %

FORMAT OK(D10.4/R10.4¢T10.4°A1) %
A=0,001107 %

WRITE(ArAesArOK) %

The printed line would then be as indicated below:

% (DlU.LH RlU.’-J-r TlO.f-H Al) ‘T)

/ \ N\ vtenk ine

ALMAAA.D0011A1,1079=03AAA.001107

UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

. 9.5.3. Repetition of Editing Codes

A single editing code (or a group of editing codes) can be used a number of times
without actually repeating the code itself in the format statement. Three different
methods can be used:

B Simple repetition — used when the number of repetitions required is known.
B Variable repetition — used when the number of repetitions depends on data.

B Indefinite repetition — used when the number of repetitions is indeterminate.

9.5.3.1. Simple Repetition

An editing code may be repeated by prefixing it with an unsigned nonzero integer
constant which specifies how many times that code is to be repeated.

Example:
FORMAT F1(R16.8rR16+:8/R16.8¢A01)

is equivalent to

FORMAT F1(3R16.89A1)

It is also possible to repeat a group of editing codes by enclosing them in paren-

theses and preceding this parenthetical group with an unsigned nonzero integer

constant indicating the number of repetitions of the group. There is no limit to the
. depth of nesting, editing codes or groups of codes.

Given the declaration

BOOLEAN ARRAY BOOL(1:7e=1:4) %

the following format would permit printing the array elements with only one row per
line

FORMAT FORM (7(6B7+A1)) %

9.5.3.2. Variable Repetition

A second type of repetition is the variable repeat. Instead of an integer, an arith-
metic expression or Boolean expression enclosed in colons specifies the number
of repeats. The Boolean values TRUE and FALSE are equivalent to one and zero,
respectively.

Example:

INTEGER ARRAY A(1:INe1l:iM) %
FORMAT F(:nN:(IMI(R16.8)rA1))

would print the array one row per line (so M should be less than 9). The expres-
sion (N or M) is evaluated at the time the editing code is activated. If N or M have
a value of zero or less, the group of format codes under control of that repeat ex-

. pression is skipped. Note that in this type of repetition, the codes to be repeated
must be enclosed in parentheses even if there is only one such code.

UP-7544

UNIVAC 1108 ALGOL SECTION: PAGE:

9.5.3.3.

Indefinite Repetition .

A final variant of editing code repetition is the indefinite or unlimited repeat. This
is accomplished by enclosing a group of format codes in parentheses without pre-
ceding this parenthetical expression with an integer constant. The innermost
parenthetical group that is not preceded by an integer constant is unlimited and will
be used repeatedly until the output list is exhausted.

Given:
FORMAT ONANDON (E1¢°'VECTOR B'»Al»(D7.,2¢A1)) %
REAL 2 ARRAY B(l:M) %

then

WRITE(B+ONANDON) %

will produce the following on a new page

VECTOR B

XXXX o XX
XXXX o XX
XXXX o XX

XXXX o XX .

As an extension of this feature note that the parentheses surrounding an entire
format are indefinite repeats. If there are more values to print upon reaching the
end of the format string the whole format is repeated. Writing stops when the two
following conditions are satisfied: there are no more values to be edited, and the
right parenthesis of an indefinite repeat is encountered. Any editing code en-
countered when there is nothing more to be edited is treated as Xw. Nonediting

codes are honored.

Example:

REAL AB 3%

FORMAT Z(5D7.2rA2.3¢"ABOVE IS DERUG 1'rA1) %
A= 17,00 %

B = =18.00 $

WRITE (ArA/2:BeB/2¢2) 3

produces

AL1T7.00AAA084504-18.,0044=9,00
ABOVE IS DEBUG 1

A common error to watch for is the omission of an activation code within an
indefinite repeat (or within a format declaration in general):

FORMAT QTE(Es (8R164+8) rAl.2) .

UP-7544

UNIVAC 1108 ALGOL sECTION: PAGE:

would skip to the top of the next page but would not print anything. This error
could be corrected as follows:

FORMAT QTE(E»(8R16.8¢A142))

In this format, E is equivalent to E0 which has the effect of skipping to the bottom
line of the current page. EO followed by Al will print on the top line of the next

page.

Format codes to the right of an indefinite repeat or unlimited group can never be
reached. The following output format:

FORMAT FORMO(X5¢I5¢D10e¢3,A1r (I5,u4D10.,3rA1)9¢X10¢I50A1,2) %

used with a WRITE statement will cause the first two values to be printed ac-
cording to I5 and D10.3. Since the inner parenthetical group is not preceded by

an integer, printing will continue according to specifications within the parentheses
until the output list is exhausted. The last three codes will never be reached.

A library procedure called MARGIN is useful for changing the margin settings on
the printer. The standard form is 66 lines long with printing starting after line 4
and continuing until line 62. The call,
MARGIN(<length>, <top>, <bottom >)
where all parameters are integer expressions changes the form to the desired setting.

For instance, to set to standard:

MARGIN(66+4r62)

A fourth parameter to MARGIN (if present) may be a string, in which case the string
is typed on the console when the printer symbiont comes to that point.

MARGIN(20+8¢13¢» 'OPERATOR = ACME €O+ ENVELOPES')

UP-7544 UNIVAC 1108 ALGOL o Birdfied I
The following example illustrates how versatile formats and lists can be. It prints .
an (N,M) array in a real format:

wd 1T FOr TFST

COMPILEDL BY UNLIVAC 1107/48 alLoOL ON 25 JUn 67 AT 11:38:27 1 MAY b6 LEVEL &
HLOCK 1 LEVEL 1
1 INTEGER wie Ne I1e 120 1o J 9%
¢ RFAL K %
%] KEAL ARRaY A(1:50r1:50) %
4 FORMAT ALLAX11esbNTIFRIMINCIL+Yen))=11+12 ("COL" pI3sXE)rALe 20l (T"HROWY » TS
5 SERTIER(MIN(LI+9eN))=T1+1:(RL2.5)ral)eA2) %
6 LIST HALR (FUR T1=(1sluei) DU (FOR I2=(I1+1eMINCIL+9eN)) DO L2¢
7 FUR J=(1s1eM) DO (Je FOR L2Z(I1e1eMINCIL+Ge)) LO A(IZ29d))))SE
H o = 0.0%
4 o= 24%
i Iy = 14%
41 FOR I = (1r1loN) 01O
12 FOR O = (1rleM) 0O .
B HEGTI 31
14 K = Kk + lelU %
15 Allry) = R
ib ENU v = |
Ao wR1TE (ALLeHAIK) %

ENL: #LUCK 1

COMPILATLON TIME FUR PHASE 1 wa$s 2 SECUNULS)
COMPILATLION TIMF Fuk PHASE 2 wAS 0 SeCuNuis)
COMPILATION COMPLETE

UP-7544

UNIVAC 1108 ALGOL

SECTION:

PAGE:

15

v
Hilw
Hiw
Hiw
W
Hlw
Hiw
HOw
tiw
Hiw
Hiw
Riw
Riw
Hiw
Hi
RO w
HOw
Hw
oW
KO w
HOw
HUwW
Hiw
HOw

HUw
HOw

b
F

"L
(118
it
i
"
el
it
R,
i
1
"
"t
e,
i
i,
"l
L
1%
Aliw
il
Hw

B

35333z oe

*

DOE G

T~NT

10

Ll 1
LeuOuOe+ul)
Lol e+utl
JeulluDe+uu
Yauliihe +ul
Seubile+00
D.ullUDr+0U
Teulinlr+ul
HBeblulle+ul)
Yaulluler+ul
LavltOr+il
L.1lw0r+ul
Leclivle+ul
Lastullr+ul
lestivlr+ul
l.nbulr+ul
Lea(luOe+ul
Lo fu0e+ul
lLetIUDe+u1
le90ulr+ul
2«ululr+ul
2« 1000 +u1
Zecliulir+ul
2ed0U0 +UT
cadliuDs+ul

CuL 11
Zaululetu?2
2ad2U00e+u2
Za43ulet+u2
Zeulille+u2
Zatthulletu2
ZabUlr+u2
et TUle+12
2abEuls+u2
Zaubule+u2
Eanlule+u?
21000 +u2
2e220Ulr 402
ZahZU0+02
Cabtille +1,2
Zabbuletu2
canblle+12
caaTullrtug
ZeSbulet+,2
ZenCulr+u2
detllu0r+02
Zanluls+u2
candlle+u?2
Z-0duldetu?
Zeobule+12

eXxrCuT N 1 TME

The WRITE statement using format ALL and list HAIR has the effect of printing
the elements of a real array by rows with ten elements per line. The output has

this form:

CuL e
Zentlnle+iy1
FatilinUe+ gl
Ze e+l
Aealinlie+,l
Feslinle+ul
Seulbiilr+ul
Aellulr+ul
daclulr+ul
Se3000r+ul
Setluls+ul
Aebtilr+ul
Sdenlulrtul
Gatlule+ul
Sanuletul
SeG000r+u1
GauDulbe+ul
4a10ubr4ul
baAliille+ul
GadUule+yl
sadlUnbrtol
Saollile+ul
Gaolinbe+ul
GaiUNUr+ul
Gabtlole+ul

GuL- de
Fendule4y2
Zetinile+u2
Zenlulr+u2
Zendiilr+u?2
Zan800e+0u2
Paflnle+u2
Aedlulle+u
Fel2ule+yu?2
Peddnler+u2
Aedbulir+u2
Pedbulle+u?2
Fadtlille+y2
el Tule+u?
AadBile+u2
Ae G0 e +02
Aettlinlle+32
Penluletu?
deti2ilUe 402
2an3ulet+u2
Zettthiulle+12
Aenbhilr+u2
Fettonlle+12
et N0 +u2
PactHile+u2

CuL o
Yasluylr+nl
Sevlufle+nl
Selluydr+ul
He2Uu0r+ul
Haea0uls+ul
Haet(luls+ul
hatalule+nl
Setluls+ul
HerunNe+ul
5.h0U0e+u1
900040l
oeuNs+ul
o100+l
oL20Ul0e+01
oes0ubetul
ne4fuletul
65000 +01
oanliutetul
B F0UN 401
penillg0e+ul
pLY0UN 40l
feliU0y +ul
f«10uDe+011
Taule+ul

CoL 12
AanHull o412
Zesiiufe+ug
celUuletu?
242000402
Pe9Aule+n2
25000 +02
25500 +02
2a90U0r+02
ZaSTule+02
caGHuletu2
Ae4Qule+ugz
AeuluDe+u?
Aetilulbe+02
J.L2UDs+02
Gelidube+n2
denuDe+up
detihuletup
S.06Ulr402
Seli7Ule+0u2
SeUBUDr+uP
SeuGUdr+02
Selliufe+u2
SalluDe+u2
de12Ul 42

Tatdd SELCCRNGS = LInHakY

cuL 4
7430ubrtul
Teululletul
fantuletyl
TaoOule+ul
e 700D +U1
fadtuDe+yl
feu0ubedul
Hatulluhe+ul
delNuOr+ul
Hedlube+ul
Bad0U0e+ul
BeuOubr+ul
HenDulr+ul
denliulir+ul
de 700 +U1
HettQUDr+uUl
dad0ulir +ul
Seuliuny +11
SelUO+u1
Ge20ulir+ul
Ye30u0r+ul
SeqOUOP+UL
YenluOr+ul
YeoOube+ul

CuL 14
S+13008+02
Lelbule+y2
SelH00r+02
Jelbuls+u2
JelTU0r+02
JelHUDP+U2
Eel900e+u2
Seglulir+u2
Je2100r+u2
Se2000tu2
2e2300r+02
2e2buletu?
de2bUulr+u2
Se2bL0r+u2
Se2TUDr+u2
Se2RUNr 02
Je29ulr+u2
Sed000r+y2
Sadlulie tu2
Ses82000 402
Jad3u0etue
Zaddule+u?
Sedbulie+u?
Sedbule+u?

UF 1 mAT oh

CoL: &
Setlulledl
Setsllule+ul
Yelinle+l
Teulis+02
LeluDe+0?
LetiPuletu2
Leudtille 02
Laltiine 402
LaUSU0e+02
Laublill e +02
LauT0De+02
LeUhuUr+u2
Ley©une+u2
el er+u?
Lellube+u2
LeiPnlr+02
Lel3ulr+ug
LelUuNe+u2
LelBSUle+02
LelbuDstu2
LelTUDe+u2
1« 18U0+UZ
119000 +02
LepOUDe+02

CoL: 1hH
Je3700r402
SeFUDr+u2
S 3000 r+02
Senliulr+p2
Sedlulletu2
Jab20letu2
Je4 300 +02
debbule+u2
debhule+2
Debbule+le
Det 7TUDr+0LZ
SetihU0r4+u2
SeuBO0r 02
ude+u2
Jes1luNe+u2
Jeh2u0r+u2
Jebdu0r+02
Seblnu0e+u2
Sebhhule+02
Jeboude+u?
d.5700 402
AahttNe+lz2
e 0800 r+U2
Secliule+u2

CuL o
loztule+u?
lezPulle+y?
Loc3utie+u?
lLezduuer+u2
Lechullrtu?
lLegtulle+02
LazTullr+u2
lazRulr4u?
LozU0r+u?
LesNuur+u?
loaluUr+u?
L.32000 402
Le3300s+u?
l.34uue+02
la3500r+02
L.36ulr+u?
Los7ulertu?

«SBUUP+L2
l.35ulr+u2
Legtube+u?
Lo lulr+u?
L.sPulr+u?
Leu3ulr+u?
Leyglute+u?2

CuL 1o
Japlulletu?

coSulr+u?
3.bbulr+U?
JdeoTulr+u2
d.cBUUe+U?
Sen9uUr+u2
J. 7000 r+uR
Seflulr+u?
J.7PU0 402
S.7300r+uR
3. /4ulr+u?
Set5ulr+u2
JatRUUr+L?
G700 U2
Se RGO 4UR
S fGUUr L2
Jeb0uUe+u?
Jetlulle+u2
SabPulle+u?
S.n3ule+u?
Senlule+u?

UL v
Lagsule+u2
Lotbyle+u?
Lot7Une+02
Lob4bune+up
lL.uvune+u?
Lebiou0e+u2
Lablune+up
Leb2Uu0e4u2
L.5300,402
L.buune4u2
Labbune+u2
L.brupe+u?
Lao7Une+02
L.obFUDr+02
Leb%00s4up
Lat:0UDe+U2
LletnluDs4u2
Lat:2UuDe+u2
L.e3U0s+u2
Latbube+u?2
lethube+u2
Letbule+u2
LaoT0Ds+02
LecHUNP4UP

cuL 17
JetHU0I+L2
SetiEU0 402
et fuDs+U2
JetBUD+L2
S.E900+U2
J.20U00 402
JaY1U0r+02
deC2U0 402
Ja%3uDetu2
d.GUU0 402
Jabbulrtu?
Je9hU0s+u2
39700 +0L2
3.9F00+U2
3.99Uu0r+u2
4. UDUDP+LP
4.UlUDr4U2
Gei2UDrtUP
G.03U0r+02
4a.UbU0r+02
H4abU0P+U2
40000402
4. LTUD+UR
Y. UFEUNP+U2

cuL &
labSule+y2
Le/oulietne
la/1u0e402
Le7Pulird02
la73ulle+u2
Le7400e402
le7hulie4p2
1e76000402
lLe77000r402
1.7800¢40U2
1.7900r+0u2
l.8000,402
18100402
lebs2ulet02
l.s300.402
lebule+i2
l.84500402
ledeulie+u2
lea7uletu?
l.aBulle+u2
l.84900r+0u2
leynule+u?2
l.y1u0r+u2
1.92000402

CuL 18
Y4augulistu2
GelDUUe+U2
GellUOe+02
412000407
4e.l300r402
Yalbule+u?
Halbulletl2
4.16000+02
417000402
GelBOOP+U2
4el900r+02
Ge2Oulr+02
Ge21000402
Ye2200,402
423000402
Gelbulie+02
YGaodSU0e+u2
Gachule+02
4.2700s+02
La2B00e402
be2Quletup
Gadtlulet+u2
HBaslube+02
Ga3200r402

goy, %
9300402
sS4ulr+02
500402
LSRUL P02
S9700 402
SGHPU 402
«9a00+02
2.00000+02
2.U1000+02
2.02000+02
2.0300,402
2.0400r+02
2.05000+02
2aUR00s+p2
2.0700¢+02
2 URU0r+02
2.04900r402
2e1000r402
2411000402
2.12000 402
2«13000 402
2elBp0r+y2
2+15000+02
2s1600s+02

coL 1u
2el7UUr02
2s+1800r4u2
2el0uuetu2
2e2NUller+u?
22100402
2e220Ur+u2
2:2300e+y2
2e2u4uur+y2
22500402
2e2hlUr+02
222700412
22800402
2e2000r+02
2e3NUDer+02
2«31000102
232000102
2+32000+02
2e3u00e+02
223500402
2e3RU0P1U2
2« 37000402
2«3800r402
Zeduyus+u2
ZedNUUP4UR

UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

9.6. FORMATTED INPUT

As with writing, a format may be included as a parameter to the READ procedure. A
format tells how the card is laid out. The major advantage in using formats is that
constants need no longer be delimited by blanks, and strings need not be enclosed in
string quotes — the format specifies the ‘fields’ in which information lies. The dis-
cussion that follows is based on an example designed to illustrate most of the funda-
mentals of reading formatted cards.

The format declaration is the same as described in 9.5. The difference between a
format being used as a parameter to WRITE and one being used as a parameter to
READ is that the editing and nonediting codes are interpreted slightly differently.
However, they are enough alike that in many cases the same format may be used with
both procedures.

The following example illustrates reading data from cards according to a specified
format. The information pertains to student records with each card having the follow-
ing format:

Column Contents

1-5 Student number
6-—7 Student initials
8-21 Student name
22 Status

23-24 Curriculum
38—-44 Course name
47 Credit hours
60 Letter grade

The problem is to read the above data in a form that will make the manipulations easy
and permit printing all the information. It is this type of problem which gives rise to
the necessity of specifying the card format. The steps necessary to achieve this
result are:

(1) Read a card

(2) Accept columns 1-5 as an integer Student number
(3) Accept columns 6-—7 as a string Student initials
(4) Accept columns 8—-21 as a string Student name
(5) Accept column 22 as an integer Status

(6) Accept columns 23—24 as an integer Curriculum

(7) Skip the next 13 columns

(8) Accept columns 38—44 as a string Course name
(9) Skip 2 columns

(10) Accept column 47 as an integer Credit hours

(11) Skip 12 columns

(12) Accept column 60 as a string

UP-7544 ’

UNIVAC 1108 ALGOL SECTION: PAGE:

The FORMAT declaration can be used to take care of all the above functions. For
example, the format could be

FORMAT VAYDREI(A»ISeS2¢S51UrI1,I129X139S7eX2rI19¢X12¢S51)%

Note there is one entry in the format for each numbered line above. Each of the items
in the above format is referred to as a ‘format code’. Of course, the initial A is
analagous to the terminal As.t of the write and is required to activate the subsequent
READ procedure.

A reasonable program segment for the above problem would be:

INTEGER STUDNO¢STATI»CURCI CREDS %
STRING INITIALS(2)NAME(14)9COURSE(7)GRADE(1) %
FORMAT VAYDREI(A»ISeS2,S14rI1,12,X139S579X2¢I1eX12,S1) $
LIST FRIEDRICH(STUDNO» INITIALSsNAME»STATI»CURCI»
COURSE »CREDSGRADE) %
READ(CARDSFRIEDRICH»VAYDREI) %

Only two nonediting codes are permitted with an input format:

A activation code — required as the fitst code of the format to activate the
subsequent READ procedure.

Xw — skip over w columns on the card

The editing codes (some of which are not in the example) have the following mean-
ings, and w and d are restricted as before (see 9.5).

FORMAT CODE ACTION

Bw Boolean Accepts Boolean information from the field — either TRUE,
FALSE, or 1, 0.
Dw.d Real Accepts real information from the field. If the number is al-

ready real, (i.e., has a decimal point or exponent part) then
that determines the decimal. Otherwise, a decimal point is
inserted d places to the left of the right edge of the field.

Fw Free Accepts an unspecified number of values from the field.
These numbers must be punched in free format mode; that is,
values may be punched any where within w character posi-
tions.

Iw.d Integer Accepts information from the field as being integer to the
base d. d=0 is equivalent to d=10.

Rw.d Real Same as Dw.d
Sw String Accepts the whole field as a string.
Tw.d Real Same as Dw.d

Table 9-3. Input Editing Codes

UP-7544 UNIVAC 1108 ALGOL

SECTION: PAGE:

9.7. END-OF-FILE CONDITIONS ON CARD INPUT .

Control cards are identified by a master space (a 7—8 punch) in column 1. Except for
one special control card, the EOF (for end-of-file), these cards are never read by an
ALGOL program. By using labels as parameters to the READ procedure, the program-
mer can detect a control card. In that case, if an attempt is made to read such a card,
the READ procedure terminates reading and exits to the given label.

The EOF card has the letters EOF in columns 3—5. When an EOF card is encountered
by the READ procedure, reading terminates. No new values are assigned to the re-
maining parameters in the<input list>. If a label is present as a parameter, the exit
is made to that label. Otherwise, exit is made to the next ALGOL statement. The next
time the READ procedure is called, it begins by reading the card after the EOF card.
Thus, the purpose of EOF is to give the programmer a convenient method of separating
sections of data of unknown Iength.

If a control card other than an EOF card is encountered, no more data cards can be
read. The exiting of the READ procedure is controlled in the following way, depending
on the number of labels in the READ call:

0 labels The program is terminated.
1 label Exit is made to that label, just as if an EOF card were read.
2 labels Exit is made to the second label (the first is for EOF cards).

A designated expression may be used instead of a label.

Example:
BEGIN ARRAY A(1:20)%
LOCAL LABEL OKeFIN %

WEEDSREAD(CARDSrA»OKeFIN) %

OK: WRITE ('EOF - CARD READER') $ 60 TO WEED %
FIN: WRITE('PROGRAM TERMINATED BY CONTROL CARD') %
END %
9.8. MAGNETIC TAPE AND DRUM I/O — THE POSITION AND REWIND PROCEDURES

The general call to the READ and WRITE procedures may be defined fairly closely as
follows. For WRITE:

WRITE(< device >, <modifier list>, <label list>,
< format >, < output list>)

and for READ:

READ (<device>, <label list>, <format >,
<input list>)

9 19
UP-7544 | UNIYAC 1108 ALGOL l SECTION: PAGE:
So far only the printer, card punch, and card reader devices have been discussed. Two
additional devices, tape and drum, will now be considered.

The call WRITE(TAPE(i),...) writes the information in the output list on logical tape
unit i, where i is a nonnegative integer expression. The actual physical unit used is
installation—dependent, but typically it might be:

Logical unit Actual unit
0 Tape A
1 Tape B
2 Tape C
3 Tape D
4 Tape E
5 Tape F
6 Drum octal address 01000000-02777777
7 Drum octal address 03000000—046000000
8 Printer
9 Punch
. When the actual unit is printer or punch, the action of WRITE is exactly the same as
if PRINTER or PUNCH were used instead of TAPE(i). When the actual unit is tape

or drum, the output is written in an internal format (unedited data in blocks) readable
by either an ALGOL or a FORTRAN program. Do not confuse the tape-simulated drum
file with the random access drum. The random access drum is called ‘DRUM’ and is
discussed later. When the logical tape is a drum file, it is treated exactly as a tape
file (i.e., may only be accessed in a serial manner). The REWIND procedure applies
to the drum file just as for an actual tape unit. The REWIND procedure is called as
follows:

REWIND(TAPE(I) pTAPE(J) 1 ses)
with the option of

REWIND(TAPE(I) e eeer INTERLOCK)

which rewinds the indicated tapes with or without interlock as indicated.

The action of WRITE is basically the same as always; the information is output to
some device. However, there are three additional concepts to consider.

20

SECTION: FPAGE:

UP-7544 UNIVAC 1108 ALGOL ’

The first is the interaction between READ and WRITE. The call

WRITE(TAPE(i), < output list>)

records a piece of information, called a logical record, on the device. This record may
occupy one ot more physical blocks on the tape. When READ is called by

READ(TAPE(1, . . .)

it will read exactly one logical record from TAPE(i). Therefore, the input list for the
READ procedure must be compatible with the output list that produced the record,
except that the input list may be shorter than the output list.

Example:

REAL ARRAY A,B(1:1001:10) %
INTEGER NeI %

LIST L(FOR I=(1r1/N) DO A(3r1)) %
WRITE(TAPE(O)eNeL) %

REWIND(TAPE(O)) 3%
READ(TAPE(Q) fNeL) %

The only incompatibility allowed is that the input list may be shorter than the output
list. The values written are position-dependent and lose all identity with the output

variables. .

In the following statements, with the above declarations, the array A is ignored by the
first READ, and the next call on READ begins at the next record:

WRITE(TAPE(O) #NeA) $
WRITE(TAPE(O)B) %

REWIND(TAPE(0)) %
READ(TAPE(O)eN) %
READ(TAPE(0) »B) %

The second concept is that labels may be parameters to READ and WRITE when the
device is TAPE. When writing, exit is made to the label if an attempt is made to
write past the end-of-tape. The label parameters to READ are used as exit points
under the following conditions:

NO. OF LABELS EXIT TO IN CASE OF
0 Normal exit EOF record or end-of-
(next statement) information
1 The label As above
2 First label EOF record
Second label End-of-information (EOI)

9
UP-7544 ’ UNIVAC 1108 ALGOL J 'szcnou: JFAOI' Y

. The third concept is that of the modifier list. Modifiers may be parameters to WRITE.
Their action is to output a marker in the information which may later be searched for

by a call on the procedure POSITION. A modifler is any of EOI, EOF, EOF
(<expression>), KEY, or KEY(<expression>) with the convention that EOF is
equivalent to EOF(0) and likewise for KEY. Ia these modifiers <expression> may be
any arithmetic or Boolean expression. Modifiers may appear in any order; that is, .
EOF may appear before EOI. The activate codes are executed as they are encountered.
Thus, if there is more than one activate code in the format, EOF, EOI, etc. are output
if they are encountered again before the next activation code.

If the modifier list contains KEY, then a KEY record is written before the usual record
produced by WRITE. If the modifier list contains EOF then an EOF record is produced
after the usual record. The expression is merely used to identify a particular KEY or
EOF. If the expression is a string, only the first six characters of it identify the
‘EOF record.’

Example:

INTEGER ARRAY I(1:101) %
INTEGER J %

WRITE(TAPE(O) dKEY('I")r1)$%
WRITE(TAPE(Q) o»KEY(*=I")sFOR J=(141+101) DO =I(J)) %

Also the forms

. WRITE(TAPE(O) fKEY(1)) 9
WRITE(TAPE(O) »EOF (1)) %
WRITE(TAPE(O) vKEY (1) rEOF(1)r4e0) &

are permitted. The modifier EOI produces a tape end-of-information mark after the
usual record. The procedure POSITION can be used to position a tape to a previously
written KEY or EOF record, or to the end-of-information, or to a given number of
ordinary records. The call is

POSITION(TAPE(i),< position parameter >, <label list>)
where the < position parameter>is

B EOF (<expression>)
B —EOF (<expression>)
B KEY (<expression>)
m —KEY (<expression>)
B <integer expression>

B EOI

m —-EOI

22

SECTION:) PAGE:

UP-7544 UNIVAC 1108 ALGOL ’

The direction of positioning is indicated by the sign of the position parameter, positive
for forward and negative for backward. EOI stands for ‘end-of-information’ and the
positioning is done to the place where the next EOI mark is written. If the position
parameter is an integer expression, the positioning is over that many logical records
(KEY records not included — they are also ignored when encountered by a READ
statement). Abnormal exits from the POSITION procedure occur as follows:

Position Parameter Encounters Exits to
EOF End-of-info First label
KEY End-of-info First label
<integer expression > EOF record First label
End-of-info Second label, or first if there is
only one.

If the label list is empty, then the exits are made normally; that is, to the next ALGOL
statement. But, using labels ensures that the positioning was done successfully when
control comes back to the next ALGOL statement:

INTEGER ARRAY A(CL1IN) %
LOCAL LABEL OHNO %

START:
WRITE(TAPE(2)KEY(1)»A) 3

WRITE(TAPE(2) rKEY(2)sA) %

WRITE(TAPE(2) oKEY(3) vEOFsA) %
REWIND(TAPE(2)) %
POSITION(TAPE(2) ¢KEY(3) »OHNO) %
READ(TAPE(2) rA) 3

POSITIONI(TAPE(2) v=KEY(2)OHNC) %
READ(TAPE(2)»A) %
POSITION(TAPE(2) r=KEY (1) 0HNO) %
READ(TAPE(2)rA) %

POSITION(TAPE(2) yEOF»OHNO) 3
GO START %
OHNO = WRITE('ABNORMAL EXIT FROM POSITION') %

The procedure POSITION always positions over the record it is looking for in the
direction indicated. Thus a POSITION backward to an EOF record followed imme-
diately by a READ will encounter that EOF record immediately.

The position backward to an EOF or KEY record cannot be used when TAPE(i) is
a drum-simulated tape file,

UP-7544

UN;VAC]]08 ALGOL SECTION: ? PAGE: £

The device ‘DRUM’ allows the reading and writing of information in essentially a
random access manner. For this purpose a portion of the drum is set aside and the
parameter to DRUM indicates the relative word address of this random access file.

Example:
WRITE(DRUM(O)»A)

writes A at the very first part of the random file. To effectively use DRUM, the pro-
grammer must know how many words are required for each expression or array being
output. The answer is that single precision quantities require one word (INTEGER,
REAL, BOOLEAN) and double length quantities require two (REAL 2 and COMPLEX).
Strings require one word for each six characters of their length plus one additional
word. Information may be read from DRUM address i by

READ (DRUM(1I) »< input list >)

A label as a parameter to a READ or WRITE with DRUM is used as an exit if an
attempt is made to read or write past the end of the file.

