UP-7544

74

SECTION: PAGE:

UNIVAC 1108 ALGOL

L 8

7. PROCEDURES

INTRODUCTION

A procedure in ALGOL is used to specify an independent section of a program (which
usually represents an algorithm) that can be called or executed at different points
throughout the same program or may be used in other programs. The operations to be
performed are fixed, but a list of parameters makes it possible for a procedure to be
used with varying values and/or variables.

A procedure must be declared in the declaration part of the block in which the pro-
cedure is referenced. More than one procedure may be defined at the beginning of a
block. During program execution when a block is entered, the first statement executed
is the first executable statement following the procedures (if any).

The procedure declaration consists of a procedure heading and a procedure body.
The heading consists of a procedure identifier, a formal parameter list, if any, a
value list, if any, and specifications, if any. The procedure body follows the spec-
ifications and consists of a statement, compound statement, or a block.

Example:

PROCEDURE NFACT (ARG1le ARG2) %

INTEGER ARG1l» ARGZ %

BEGIN
INTEGER I %
ARG2 = 1 %
FOR I = 1 STEP 1 UNTIL ARG1 DO

ARG2 = ARG2*I1%
END

In the above example NFACT is the identifier for a procedure that calculates the
value of N factorial. ARG and ARG?2 are the formal parameters (arguments) for the
procedure. ARG is the number whose factorial is to be calculated, and ARG2 is the
result after the procedure has been executed. ARGI and ARG2 are INTEGER vari-
ables. The BEGIN-END pair sets off the body of the PROCEDURE. The BEGIN-
END pair can be dropped if the procedure body is just one statement. Since I is de-
clared as an INTEGER, it is local to NFACT.

A “‘call”’ of the above procedure would be of the form:

NFACT (NeFACT) %

NFACT (N1,FACT1) %




7

UP-7544 UNIVAC 1108 ALGOL ‘ SEETIGN EABE

In the first call, the actual parameters N and FACT are substituted for the formal
parameters ARG1 and ARG2. Later the parameters-N1 and FACT1 are substituted
for ARGl and ARG2 in the same fashion. Thus procedure is a closed subroutine,
and the call establishes a linkage to the subroutine.

An alternate form of the parameter list allows comments to be inserted between the
formal parameters since the comma separating formal parameters is equivalent to:

) < string > : (
PROCEDURE NFACT (ARG1l» ARG2)

could be written as:

PROCEDURE WFACT (ARG1) AND STORE RESULT IN: (ARG2) %

or

PROCEDURE NFACT (ARG1) ARG1 INPUT AND ARG2 OUTPUT: (aRG2) %

The following is a procedure for.the multiplication of two matrices:

PROCEDURE MATMUL (AesBeCeNeMeP) &
REAL ARRAY AsBreCe $

INTEGER NeMeP 3

BEGIN INTEGER IrJeK %

REAL TEMP %

FOR I=1 STEP 1 UNTIL N DO

FOR J=1 STEP 1 UNTIL P DO

BEGIN TEMP=0,0 $ FOR K=1 STEP 1 UNTIL M DO
TEMP=TEMP+B(IeK)*C(KrJ) %
A(IsJ)=TEMP END I+J LOOP

END MATMUL %

A procedure statement calls for the execution of a procedure body.

Given the declaration
REAL ARRAY A1(1:10¢1:7)s A2(1310,1:15)e A3(1:15,1:7) %
then the procedure statement

MATMUL (A1,A2¢A3910¢15:7) %

has the effect of multiplying the two matrices A2 and A3 and storing the results in
Al.

Expressions may also be used as actual parameters. Care must be taken to match
the type and kind of each formal and actual parameter in any call. .




UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

. 7.2. VALUE ASSIGNMENT (CALL BY VALUE) AND NAME REPLACEMENT (CALL BY
NAME)
The above procedure NFACT makes use only of the value of ARG1 whereas it changes
the value of the actual parameter which replaces ARG2. Thus NFACT could be re-
written as follows:

PROCEDURE NFACT (ARG1: ARG2)

VALUE ARG1 %

INTEGER ARGle ARGZ %

BEGIN
INTEGER I %
ARG2 = 1 3%
FOR I = 1 STEP 1 UNTIL ARG1 DO

ARG2 = ARG2%*]

END%

The procedure statement
NFACT (NUMBEReFACTORIAL) %

has this effect: the value of the actual parameter, NUMBER, replaces ARG1 when
the procedure statement is encountered and NFACT does not have access to the
location assigned to NUMBER. ARGI is known as a < Call by value> parameter.
A value parameter must also have a type specification and cannot appear to the left
of the replacement operator in the procedure.

. Any parameter (such as ARG2) which is not listed in the YVALUE part of the procedure
declaration is said to be a < Call by name> parameter. The name FACTORIAL re-
places the name ARG2. The value of FACTORIAL is changed as the procedure is
executed.

In the following examples, numeric values or expressions are used as actual para-
meters:

WFACT (15+FACT1) %
\ NFACT (J+K+MsFACT2) $

It should be noted that a value parameter which is an array or string identifier re-
quires that the entire array or string supplied by the procedure call be copied locally
within the procedure. As a result large amounts of working storage may be used un-
expectedly when the procedure is called. All calculations in the procedure use that
temporary copy. As an example, suppose it is necessary to find the determinant of
a matrix without destroying the matrix. The usual computational methods for finding
determinants destroy the matrix with which they are working. Thus the original
matrix must be copied somewhere. Specifying the array as VALUE accomplishes
this:




7
SECTION: PAGE:

UP-7544 UNIVAC 1108 ALGOL '

REAL PROCEDURE DET(A) SQUARE MATRIX WHOSE DIMENSION TS:(N)$%
VALUE ArN 9

REAL ARRAY A %

INTEGER N %

BEGIN

(STATEMENTS)

DET=+.+s END DET %

This is an example of a function procedure explained in 7.4. If an expression is used
as an actual parameter, and if the parameter is called by name, then the expression
is reevaluated at each occurrence of the formal parameter in the procedure.

7.3. SPECIFICATIONS

The <type> of all formal parameters defined by a procedure declaration must be
specified in the specification part of a procedure heading. The format of the speci-
fication part is as follows:

<specification> < identifier list>;

The specification may be in any one of the following forms:
<type>

ARRAY

<type>» ARRAY

PROCEDURE
<type> PROCEDURE
LABEL

SWITCH

FORMAT

LIST

and< type> is one ALGOL type: INTEGER, REAL, REAL 2, BOOLEAN, COMPLEX,
or STRING

The <identifier list> consists of the formal parameter identifiers contained in the
procedure declaration separated by commas.

The reason that all formal parameters must be specified is that the compiler must
know the type and kind or class of all parameters in order to compile proper machine
code.

Examples:

INTEGER Iv K 3

REAL Xe Y 3

REAL ARRAY Z i

BOOLEAN PROCEDURE F i .
STRING S




UP-7544

7
UNIVAC 1108 ALGOL SECTION: PAGE:

7.4.

Specifications do not include information about lengths of strings, the dimensions
and bounds of arrays, the formal parameter parts of procedures, or the contents of
formats and lists. The actual declarations of these exist elsewhere in the program.
The details of constructing a procedure can be illustrated by an example:

PROCEDURE TRANSPOSE (A) ORDER:(N) %
VALUE N % {
ARRKAY A %
INTEGER N %
BEGIN
REAL w %
INTEGER I¢ K %
FCR I = 1 STEP 1 UNTIL N RO
FOR K = 1+1 STEP 1 UNTIL N DO
BEGIN
W = A(IK) %
ACIeK) = A(KeI) %
A(KeI) W
EHD
END TRANSPOSES

FUNCTION PROCEDURES

Procedures which are to be used as functions (e.g., SIN, EXP) must have a type
associated with the procedure identifier (i.e. procedure name). This type declaration
must be the first symbol of the procedure declaration. Also for the function procedure
to have a value associated with it, the procedure identifier must occur at least once
as the left part of an assignment statement in the procedure body. In addition, at
least one of these assignment statements must be executed on a given procedure call
for a value to be assigned to the procedure. If more than one such assignment state-
ment is executed within the body, then the last one executed before exiting from the
procedure determines the value associated with the procedure. Any other occurrences
of the procedure identifier within the body of the procedure are considered as re-
cursive calls on the procedure.

The procedure NFACT could be written so that the only parameter would be N and the
value of NFACT would be N factorial.

INTEGER PROCEDURE NFACT (ARG) %
INTEGER ARG %

BEGIN
INTEGER I» TEMP %
TEMP = 1 %

FOR T = 1 STEP 1 UNTIL ARG
DO TEMP = TEMP*I%
NFACT = TEMP
END NFACT %

The call for the above procedure would be of the form

COMMENT SET FACT = N FACTORIALS
FACT = NFACT(N) %




UP-7544

UNIVAC 1108 ALGOL SECTION: PAGE:

7.5.

A function procedure is referenced by a function designator which defines a single
numerical or logical value. NFACT(N) is a function designator which will have an
integral value and can thus be used in any expression in which an integer variable
could be used.

RECURSIVE PROCEDURES

In the example above, a new variable TEMP was used to store the intermediate result
of the calculation of N factorial. Then the extra statement NFACT = TEMP was
needed to give NFACT the proper value. The reason for this is that inside the pro-
cedure body, whenever the name of the procedure occurs on the left-hand side of an
assignment statement, it is a < procedure assignment > statement, that is, the state-
ment which assigns the value to the procedure. Wherever else the name occurs, it is
a call on the procedure.

This kind of construction can be used to produce another version of NFACT which
is even simpler to write. In fact, it requires only one statement in the procedure
body:

INTEGER PROCEDURE NFACT(N) %
INTEGER N %
NFACT = IF N EQL 0 THEN 1 ELSE N¥NFACT(N=1) <

which is equivalent to the recursive definition

factorial(n) = 1 n=0 .

- n*factorial (n-1) n >0

A procedure call with the actual parameter 4 (FACT = NFACT(4)) has the following
offect. After the subroutine linkage is set up, the procedure body is virtually changed
to:

NFACT=IF 4 EQL 0 THEN 1 ELSE u4*
NFACT (3)

NFACT(3) is another call of the functional procedure having the result that the call
is replaced with the procedure body:

NFACT=IF 4 EQL O THEN 1 FLSE 4 *
(IF 3 EGL 0 THEN 1 ELSE 3*NFACT(2))

This produces another call on NFACT resulting in another change of the statement.
This goes on until finally:

NFACT=IF 4 EGL 0O THEN 1 ELSE 4%
(IF 3 EQL 0 THEN 1 ELSE 3x(IF 2
FQL 0 THEN 1 ELSE 2% (IF 1 EGL O
THEN 1 ELSE 1*(IF 0 EQGL 0 THEN 1
ELSE 1% (NFACT(0)))))) %




UP-7544 UNIVAC 1108 ALGOL N b AGE:
. The process is terminated when 0 EQL 0 occurs in the relation of the conditional
expression. The usual expression for the factorial is obtained after the unnecessary

parts of the above statement have been removed:
4 factorial =4*3*%2%*1

All procedures written in ALGOL may be called from within themselves. But it
should be mentioned that recursive procedures are not always put to good use. For
example, using the recursive properties of procedures makes a much neater looking
NFACT, but also a much less efficient one. However, recursive procedures may
have practical uses. For example, multiple integration programs use a quadrature
procedure to evaluate the inner function as well as to do the integration. (See ACM
Algorithm 233 ““Simpseon’s Rule for Multiple Integration,”” Communications of the
ACM Vol. 7, No. 6, June 1964.)

7.6. EXTERNAL PROCEDURES

External procedures are procedures whose bodies do not appear in the main program.
They are compiled separately and linked to the main program at its execution. The
EXTERNAL declaration serves the purpose of informing the compiler of the existence
of these procedures, their types (if any), and the proper manner to construct the
necessary linkages. The general form of the external declaration is:

EXTERNAL <kind> <type> PROCEDURE < identifier list>

where <type> is the arithmetic type or is empty, < identifier list> is a list of identi-
. fiers of external procedures, and

<kind> ::= empty/FORTRAN/NON—RECURSIVE

The words ‘FORTRAN’ and ‘NON—RECURSIVE’ have special significance only in
this context. Procedures of kind € empty> are ALGOL procedures and are treated
exactly like an ordinary procedure declared within the program. However, they need
not be written in ALGOL language. Procedures of kind ‘FORTRAN’ are FORTRAN
subroutines or functions and procedures of kind ‘NON-RECURSIVE’ are necessarily
written in machine language. In the following paragraphs we assume a knowledge of
the UNIVAC 1108 Executive System, FORTRAN (see 7.6.2), and the UNIVAC 1108
Assembler (see 7.6.3).

7.6.1. ALGOL External Procedures

An ALGOL program which consists entirely of a procedure is nonexecutable be-
cause it contains only a procedure declaration (see 7.1.). When such a program is
compiled, the name of the procedure is marked as an entry point when the program
is entered into the program file. Like all names in the program file the first six
characters of the procedure name must define it. Such a procedure may be refer-

enced from another ALGOL program as an external procedure.




7 8
SECTION: PAGE:

UP-7544 UNIYAC 1108 ALGOL y

Example:

PROGRAM 1

BEGIN REAL PROCEDURE DET(ArN)%

REAL ARRAY A %

INTEGER N %

VALUE AeN %

BEGIN

COMMENT THIS PROCEDURE FINLS THE DETERMINANT OF A REAL M BY N

MATRIX Ar LEAVING A UNCHANGED AND ASSIGNING THE vALU: TO DET $

L)

DET =-s « « END DET
END %

PROGRAM 2

BEGIN REAL ARRAY MATRIX (1:10.1:10) %
EXTERNAL REAL PROCEDURE DET $

WRITE(DET(MATRIX»10)) %

END 3

A user could build a library of procedures that are useful to him and then refer to
whichever he needed by merely declaring them as external procedures in his main
PI'OE[‘JH].

7.6.2. FORTRAN Subprograms

A FORTRAN subroutine or a FORTRAN function may be made available to an
ALGOL program by the declaration:

EXTERNAL FORTRAN < type> PROCEDURE <identifier list>

Actual parameters in calls on such procedures may be either expressions or arrays.
(Labels, string expressions, and string arrays are specifically excluded.) The
FORTRAN subprogram is a subroutine or function depending on the absence or
presence of < type> in the external declaration. A FORTRAN function is used
like an ALGOL functional procedure i.e., as an expression. For example, if

DET (above) were a FORTRAN subroutine:

PROGRAM 1

SUBROUTINE DET(AYNeD)

DIMENSION A(NeN)

DET FINODS THE DETERMINANT OF A REAL NXN
MATRIX A AND LEAVES THE RESULT IM De
DESTROYING A

DZees

OO0

EMD




UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

. PROGRAM 2

BEGIN REAL AKRAY MATRIX(1:10,1:10) $
REAL DRETVALUE 3
EXTERNAL FORTRAN PROCEDURE DET %

DET(MATRIX»10,DETVALUE) %
END %

7.6.3. Machine Language Procedures

A procedure written in 1108 Assembler language may be referenced in either of two
ways. The more difficult manner occurs when the procedure is declared exactly as
an ALGOL external procedure. In this case the Assembler procedure must behave

like an ALGOL procedure (that is, it must be able to handle recursive calls). Here
the nonrecursive case is considered. The form of the declaration for these is:

EXTERNAL NON—-RECURSIVE < type> PROCEDURE < identifier list >

To understand how to write such procedures consider the coding produced by the
ALGOL compiler as the result of a call in the following program:

EXTERNAL NON=RECURSIVE PROCEDURE PUNCH %
INTEGER Q¢ S %

. PUNCH(@rS) &

The statement PUNCH (Q,S) results in the four lines of coding:

LMJ 11»PUNCH

+ 2

G 00r01,01rQ
F 00¢01,01¢S

The second line states the number of parameters being handed through and the
following lines provide information about each parameter in turn. The actual form
of F is defined elsewhere in the system by a FORM directive

F FORM 6¢ 3¢ 3¢ 24

which specifies the number of bits in each field of F. (See “UNIVAC 1108 As-
sembler Programmers Reference Manual,”” UP-4040.)




UP-7544

7 10
UNIVAC 1108 ALGOL SECTION: PAGE:

The four fields of F are defined and encoded as follows:

KIND

00 = Expression
10 = Array

TYPE

01 = INTEGER
02 = REAL

03 = COMPLEX
04 - BOOLEAN

05 = STRING
06 = REAL 2
REFERENCE
00 = Constant
01 = Name

02 = Indirect
06 = Result
LOCATION

The location field specifies the location of the parameter. Indirect addressing may
be specified and index register 11 is usually designated in this 24-bit field. With
this in mind, the following rules should be followed in writing an Assembler pro- .
cedure:

(1) The return point for a call with N parameters is (X11)+N+1.

(2) The value of the procedure (if any) must be left in register A2 (and A3 for
COMPLEX and REAL 2), absolute 14.

(3) Registers 1—4 may not be used without saving and restoring.

(4) Register 10 must never be destroyed.

(5) The Ith parameter should be referenced by an indirect command, e.g.,

LA A2e*xIex11

If the parameter under reference is a double-word quantity (COMPLEX or
REAL 2) its second half is in the next location. and the parameter should be
referenced with a DL A2,*¥[,X11 ‘

DL A2rxTeX11

(6) When using an arithmetic or a Boolean expression, the word referenced in rule
(5) is the value of the expression.

(7) When using either an arithmetic or a Boolean array, the word referenced in (5)
is itself the address of the following infbrmation:

number of elements , address of first element
precision , N
lower bound (N) , length (N)

lower bound (1) , length (1)




UP-7544 UNIVAC 1108 ALGOL SECTIGN .
. where N is the number of dimensions of the array, lower bound (I) is the value
of the lower bound of subscript position (I) and length (I) is its length.

(8) When using a string expression, the word referenced in (35) is a string descriptor

of the form:

F FORM 12,6918

F length, start, address

‘length’ is the length of the string which starts at character position ‘start’ of
the word at ‘address.’” For this purpose ‘start’ is coded as 0-5 to select a sixth
of a word, S1-S6.

(9) When using a string array, the word referenced in (5) consists of two addresses,
the left one being the address of a string descriptor and the right one the address
of the array information (as in 7). The address field of the string descriptor
must be added to the first element address to find the first element of the string
array. Both arrays and string arrays are stored by column.

(10) The name of the external procedure must be the entry point of the Assembler

procedure.




