UP-7544

UNIYAC 1108 ALGOL SECTION: PAGE:

6.1.

. 6.2.

6.2.1.

6. CONTROL STATEMENTS

GENERAL

The compiler translates successive statements in the order in which they appear in
the program. The statements are also executed in this same order unless the pro-
grammer interrupts this normal sequence with a ‘“‘transfer of control.”” Once the
transfer has taken place, successive statement sequencing continues from the new
point of reference.

Transfer of control in ALGOL is accomplished through use of three kinds of control
statements — unconditional, conditional, and iterative.

UNCONDITIONAL CONTROL STATEMENTS.

The GO TO statement causes an unconditional transfer of control to another part of
the program.

The GO TO Statement
The GO TO statement may be written in any one of three ways:

B GO TO <designational expression®
m GOTO «designational expression»
B GO <designational expression>

There are three forms of designational expressions, the label being the simplest.
Example:

L:@ = SIN(SQRT(Z2)) %

GO TO L %

GO TO L interrupts the normal sequence of instructions and restarts at the state-
ment with the label L.



6 2

UP-7544 UNIVAC 1108 ALGOL SEETE: SRS
Alternatively the designational expression may take the form of a conditional ex- .
pression.

Example:

GO TO IF X EOQL Y THEN L1 ELSE L2 %

In this case if X equals Y, control is transferred to the statement labeled L1;
otherwise, the transfer is to L2.

A third form of designational expression is a SWITCH variable explained below.

6.2.2. The SWITCH

The SWITCH declaration names a group of alternative points in a program to which
control may be transferred. It includes a means for selecting a given designational
expression from the SWITCH list by means of a subscript expression (evaluated at
execution time) with the SWITCH identifier. In effect, the SWITCH declaration
defines a SWITCH variable which is similar to a one-dimensional array except that
the elements are designational expressions.

To start with, a switch must be described by a SWITCH declaration prior to its use
as a switch variable. The range of subscripts is from 1 to n, where n is the number
of elements in the switch list. If a subscript expression on a switch variable falls
outside the defined range of the switch, then the switch operation is ignored.

The general form of the declaration is

SWITCH <switch identifiers> - «<switch list>

or
SWITCH SWITCH 1 = ey, €, €3, — — — € $
where SWITCH1 is the name of the switch and e; — — — e, are designational

expressions.

A switch element is referenced in a GO TO statement by means of the switch
identifier with the appropriate subscript:

GO TO SWITCHK1(I)

where I is an arithmetic expression. This expression is evaluated when the GO TO
is executed. Control is transferred to the statement designated by element I in the
switch list of the SWITCH declaration (counting from left to right).

To illustrate, assume that it is necessary to transfer to statements labeled L1,
L2, L3, and L4 depending on whether the value of J is 1, 2, 3 or 4. This could be
accomplished with the following GO TO statement:

GO TC IF J EGL 1 THEN L1 ELSE
IF J EGL 2 THEN L2 ELSE
IF J fuL 3 THEN L3 ELSE
IF J EGL 4 THEN L4 %




UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

. However, it is much easier to set up a switch to accomplish the same thing

SWITCH S = L1» L2y L3, LU 3

GO TO S(J) ¢

Example:

SWITCH S = L1r IF X GTR Y THEN L2 ELSE L3» L4, T(I+6)r LS %

If the switch variable S is referenced from a GO TO statement
GO TO S(J)o»

the following transfer of control is made depending upon the value of J:

(1) If J = 1 then control transfers to L1.

(2) If J - 2 then control transfers to either L2 or L3 depending upon X and Y.

(3) If J - 3 then control transfers to L4.

(4) If J - 4 then control transfers to the label which is the value of the (I+6)th
designational expression of the switch T.

. (5) If J =5 then control transfers to L5.
(6) If ] €1 or J> 5 then no transfer is executed.

6.3. CONDITIONAL CONTROL STATEMENTS

Conditional control statements cause certain statements to be executed or skipped
depending on values of Boolean expressions. The |IF statement provides for executing
a statement if, and only if, some relation is true and for skipping over a statement if
this relation is false.

The |F statement may take the form:

IF Bl THEN S1 % S2 %

where Bl is a Boolean expression, S1 is a statement not beginning with IF, and S2
is any statement. If Bl is true, then S1 is executed after which control passes to
S2. If B1 is false, then Sl is skipped and control continues at S2.

In diagram form:
B1 True

Rl i

IF B1 THEN S1 $ 82 $

. Bl False




UP-7544

UNIVAC 1108 ALGOL

SECTION: PAGE:

6.4.

The general form of the |IF statement is:

IF 31 THEN S1 ELSE S2 % 3 %

If B1 is true, statement S1 is executed and statement S2 is skipped; if Bl is false,
statement Sl is skipped and S2 is executed. In either case, control continues with
statement S3 (except when either S1 or S2 contains a GO TO statement).

In diagram form

Bl True
| vl Y
IF Bl THEN S1 ELSE S2 $ S3 §
Bl False

In conditional statements, the statement following THEN can not start with IF. It
may be conditional only if it is enclosed by a BEGIN — END pair. There is no
restriction on the type of statement following ELSE.

Example:

IF BOOL THEN BEGIN IF C GEQ =5 THEN GO TO CHECK
END ELSE V = V+1 %

The following example illustrates ‘‘nested’” conditional statements:

i r B2 True +r ‘l

THEN S1 ELSE IF B2 THEN S2 ELSE S3 0§ sS4 8

| I

B2 False

Bl True

IF Bl

B1 False

Example:

IF DISC LSS 0 THEN GO TO IMAGROOTS
ELSE IF DISC EQGL O THEN X1 = X2 = =B/(2%A)
ELSE BEGIN

SDISC = SQRT(DISC) %
X1 = (=B+SDISC)/(2%A) 3
X2 = (=B = SDISC)/(2%A)
END %

ITERATIVE CONTROL STATEMENTS — THE FOR STATEMENT

The FOR statement facilitates programming iterative operations. A part of the pro-
gram is iterative if it is to be executed repeatedly a specified number of times, if it
is to be executed for each one of a designated set of values assigned to a variable,
or if it is to be executed repeatedly until some condition is fulfilled. The FOR
statement handles any of these three conditions.




UP-7544

UNIVAC 1108 ALGOL

SECTION: PAGE:

6.4.1.

6.4.2.

The general ALGOL FOR statement consists of a <FOR clause> followed by a
statement S (simple or compound) where a< FOR caluse> is:

FOR <variable> - <FOR list> DO

The <FOR list> is a sequence of <FOR list elements> separated by commas.
The value of each <FOR list element®> is assigned to the controlled or iteration
variable in turn from left to right and the statement S is executed once for each value.

All FOR list elements must be of a type compatible with the controlled variable
which may be any type of simple ot subscripted variable.

There are three possible kinds of FOR list elements:

B <arithmetic expression>

B <arithmetic expression» STEP <arithmetic expression> UNTIL <arithmetic
expression>

B <arithmetic expression> WHILE <Boolean expression®>

Simple List Element

FOR V = < arithmetic expression®» DO S §

or

FORV - ey, ey €3, €4, — — — €y DO S §

The controlled variable V is successively given the values of the arithmetic ex-
pressions, e, €5, €3, — — — ey The statement S is executed once for each value
of V.

Example:

FOR X = 1-0'1.5'2.5!305'7.5 DO S %

STEP - UNTIL List Element

FOR V = < arithmetic expression > STEP < arithmetic expression >
UNTIL < arithmetic expression > DO S §

or

FOR V = E1 STEP E2 UNTIL E3 DO S %

where E1 is the starting or initial value of V
E2 is the increment by which V is incteased algebraically
E3 is the limiting or terminal value of V



UP-7544

UNIVAC 1108 ALGOL SECTION: PAGE:

The effect of the FOR statement is probably best described by the equivalent
ALGOL statements:

El %
IF (V-E3)*SIGN(E2) LEQ O THEN
IN

i@ el

V +E2 %

In all cases if the test fails initially, the statement S is not executed at all. SIGN

(X) is a call on a standard function which will return the value 1,0, or —1 depending
on whether the value of the argument X is positive, zero, or negative, respectively.
This can be shown graphically as follows:

V assumes initial
value, E1

V - El (v - E3)* SIGN(E2)

V=V+E2

Add increment
to V

STATEMENTS

The statement S may redefine V as well as the variables appearing in E2 and E3.
Changing E1 will have no effect on the execution of the FOR statement as the
initial value is assigned to V before S is executed. Extreme care must be taken
in assigning values to V within S as this may prevent V from reaching the terminal
value.

The more compact form of the FOR statement

FOR V = (E1.£2/E3)DO0 S %

may be used instead of

FOR V = E1 STEP E2 UNTIL £33 DO S %
FOR I = 1 STEP 1 UNTIL M DO S %
FOR I = (1¢1¢N) DO S 9%

FOR X = (3-2’-1'909) DO $ %




UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

. 6.4.3. WHILE List

FOR V = <arithmetic expression > WHILE < Boolean expression » DO S §

1]

or

FORV = EWHILEBDOSS$

First V is set equal to the arithmetic expression E. If B is true, statement S is
executed. After the execution of S, V is replaced by E and again B is tested. If,
on the other hand, B is false, then S is skipped and control resumes with the state-
ment following the FOR statement.

This can be represented graphically as follows:

TEST FALSE

TRUE

STATEMENT
S

The statement S may redefine V or the variables in the expressions E and B.
Exampie (taken from Problem 2 Appendix D):
FOR B = £.5 *x (A70LDB + CLOR)

WHILE ABS(B=0LDR} GTR 10x%k{=6)*R

CO OLDB =B %

In this example the FOR statement is executed until B, the square root of A, is
accurate to six digits.

The three forms of the list elements may be combined:

FOR K = 1¢3¢5010 STEP 2 UNTIL 20,50 WHILE B DO S %

The statement S will be executed for
K =1,3,510,12,14,16,18,20 and

will then assume the value 50 as long as B is true.




6 8

SECTION: PAGE:

UP-7544 UNIVAC 1108 ALGOL

6.4.4. Termination of FOR Statements

The following section should be carefully read because it deals with concepts that
are not defined in rigorous ALGOL 60. The problem is that a program written in
UNIVAC 1108 ALGOL 60 which utilized these concepts would possibly not work

on a machine with a different version of ALGOL. The concern here is with the
value of the iteration variable in a FOR statement when the FOR statement is
terminated. The ALGOL 60 report leaves this value as undefined when the FOR
statement is terminated by exhaustion of the <FOR list>, but in UNIVAC 11038
ALGOL it is well defined, and indeed, very useful. It is because of its usefulness
that it is documented here with the warning that it may not work on another machine.

If the statement S has a GO TO statement leading out of the FOR statement, the
value of the iteration variable is the same as it was before the GO TO statement
was executed. (This is also true in ALGOL 60.) If the exit is made from the FOR
statement because of the exhaustion of the <FOR list>, then the value of the
variable is that value it held last as may be determined from the equivalent ALGOL
statements. For example, to find the first nonblank character of a string, either
one of two methods could be used.

STRING S(120)%
INTEGER IeR %

I=0 %
FOR I=I+1 WHILE (I LSS 121 AND S(I) EQL * ")
DO %

IF I EQL 121 THEN GO TO STRINGALLBLANK
ELSE FOUNDIT: R=RANKI(S(I)) %

That method depends on the exhaustion of the <FOR list> , either because the
whole string has been scanned or because a nonblank character has been found.
In one case, the final value of I is 121 and in the other it is the index to the non-
bleak character. Note that a dummy statement DO § follows the FOR statement
(see 5.7). RANK is a standard function returning the Fieldata equivalent of the
first character of the string.

The second method is as follows:

FOR I=(1¢1+120) DO IF S(I) NEQ ' ' THEN GO TO FOUNDIT %
GO TO STRINGALLBLANK %
FOUNDIT: R=RANKI(S(I)) %

This method produces the correct value of I because an exit is made from the FOR
statement by a GO TO statement.




6
UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

. A GO TO statement from outside a FOR statement referring to a label within the
FOR statement may result in an undefined situation and should thus be avoided.

FOR I=(1.1,N) DO

BEGIN

L:

E.-'_ND %
(.30 TOL %

The above statement, GO TO L, is not allowed.

However, it is easy to program the above logic by not using the FOR statement.

Example:
120
LOOP: I = I+1 $
& .
Lin
. IF I LSS N GO TO LOOP 3
60 TO L 3



