William R. Ogden CCU-03

January 20, 1966
Reprinted: July 12, 1966

i NOTES TOR 7040 FORTRAN USERS

FORTRAN is a problem-oriented algebraic language sﬁﬁilar to ALGOL.
FORTRAN IV is available at CIT on an IBM 7040 system. This system is
primarily used for sponsored research; the turnaround for unsponsored
work is unpredictable and often quite long. For this reason it is recom-

mended that, at present, FORTRAN not be used for new programs.

TABLE OF CONTENTS

A Short Introduction to the Operating System .
(including examples of complete program decks)

Timing Estimates . . . + . 4 4 ¢ v o o o o o« o
FORTRAN IV Input/Output. . . o « o o v o « o .
Off Tine OUEPUL. & 4 & 4 &4 o 2 5 « = = & o & &
Error Messages . « o« o ¢ o o s & o + o & o o« »
Library Routines and Functioms
Reference Manuals., . « ¢ o & & & v v 4 « « &
Table T FORTRAN Error Returns

Table 2 7040 Unit Assignments

Page No.

10

11

1. A SHORT INTRODUCTION TO THE OPERATING SYSTEM

The 7040 runs under the control of the IBSYS monitor. The most
important part of this monitor is the IBJOB processor. The IBJOB can be

pictured as having two nain phases:

1. INPUT IBJOB ' (TAPE UNIT)
FILE

IBJOB reads cards from the system input file (Card reader on the
Carnegie Tech System). TFORTRAN or MAP programs are translated into bi-
nary form and placed on a load file. Binary decks are stacked directly
onto the lead file. 1IBJOB continues reading input decks and stacking
them on the load file (after translation if necessary) until a $ENTRY

card is found.

2. LOAD LOADER
FILE

The S$ENTRY card causes the loader, another part of IBJOB, to take
control, The loader reads the load file, relocates the decks on it, and
takes care of any cross references between decks,

For example, if one deck contains the statement:
CALL SUMSQ

Where SUMSQ is another program (subroutine), the loader will look
for the deck SUMSQ and inform the calling program of its exact location
in memory. TIf the necessary subroutine cannot be found among the decks
on the load file, the loader will look for it in the system library.

Note that the input decks have priority over the subroutine library.
The user can write routines having the same name as library routines
(e.g., SIN, COS, SQRT); these will then be used instead of the library

programs.

If the loader cannot find a necessary subroutine in either the load
file or the library, it will print an error message such as:

UNDEFINED CONTROL SECTION name

and terminate the job.

Note that the loader does not know nor care whether the program
originated as FORTRAN, MAP, or a binary deck. As the loader processes
the input decks they are combined into one program and placed on a core

image file. This file is then read into memory and program execution

begins.

A typical input deck might be:

Columns: 1 8 16
33508 SAMPLE PROGRAM NR 1
SID 010 CCO0IW002 NAME, DEPT
$IBJOB NODECK
SIBFTC MAIN
. (FORTRAN program)
END
SIBFTC SUBI
. (FORTRAN subroutine)
END

(binary deck for another subroutine. The binary
deck contains all necessary control cards)

SENTRY MAIN

(data cards (if any))

R Y

SIBSYS
The $JOB card must be the first card of any job. It clears I/0
buffers, resets switches, and generally resets the system for the next job.

Any comments in columns 16-45 will appear at the top of each page of printed

output during the job,.

The $ID card must follow the $JOB card; it calls the CIT accounting
routine. Columns 21-23 contains the maximum time in minutes for the job.
Columns 33-40 have the same usage number, and 42-65 have the user's name,
department, etc. These card columns are the same as those for a G-20 job
card,

The $IBJOB card is next; it calls the IBJOR processor described above,
Starting in column 16 a number of options may be punched. These may be
given in any order and are separated with commas; no blanks are permitted
between options. Four of the options are of interest to the FORTRAN user:
DECK or NODECK This controls the punching of a binary deck for any

source language decks in this run. The system assumes
DECK unless told differently.

GO or NOGO This determines whether the program will be executed
after any necessary compilation. The system assumes GO.

SOURCE or NOSOURCE If all programs for this job are in the form of binary
decks, the NOSOURCE option may be used to speed up the
loading process. The system assumes SOURCE.

NOMAP or MAP The MAP option will produce a directory giving the loca-
tion of programs in memory. This is useful for debug-
ging purposes. The system assumes NOMAP.

The $JOB, $ID, and $IBJOB cards are necessary for all jobs.

A $IBFTC card may contain a 6-character program name starting in column
8. If the FORTRAN deck is a subroutine it must contain the subroutine name
in column 8.

The main program is usually the first (and, if there are no subroutines,
the only) deck. If there are subroutines, they are placed after the main
deck, A FORTRAN subroutine must be preceded by a $IBFIC card. A subroutine
which has already been punched into a binary deck includes all the necess8ary
control cards as part of the binary deck. Such a deck is placed with the
other subroutines. The order of the subroutines is not impoertant,

The SENTRY card signals the system that all programs and subroutines
have been read and that the program should now be executed (unless the SIBJOB
card has a NOGO option). Column 16 may contain a deck name. If it does,
the deck named will be given control when execution begins. If column 16 is
blank, the first deck in the job will be given control. This is why the main

program is usually placed first. A SENTRY card is necessary if the job is

to be executed.

Data cards {if any) follow the $ENTRY card. No blank cards are needed
unless the program uses them,

The $IBSYS card indicates the end of the data and returns control to
the system monitor.

Several examples of complete decks follow:

$JOB EXAMPLE ONE
$ID 010 G495AA01
STBJOB NOSOURCE

(binary deck from previous compilation)

R)

SENTRY
SIBSYS (the program does not need data)

* Ok kK £ % Kk Kk Kk k Kk Kk K Kk % K Kk %
5J03 EXAMPLE TWO
$TD 007 $205BB99 JONES, EE
SIBJOB NODECK

. $IBFTC PGR2

DIMENSION A(20)

. (FORTRAN program)

END
$ENTRY

: DATA
$IBSYS * L S S S * % % Ok % R O 0k *
$JOB EXAMPLE THREE
$1ID 015 S2061.701 CHEM
$TBJOB

: {binary deck)
$IBFTC LSQ

(FORTRAN Languége subroutine)

[N S R Y

SIBMAP ACTNH

(MAP language subroutine)

" (binary deck obtained from previous compilation)

SENTRY
$IBSYS

2., COMPILATION TIMING

The FORTRAN compiler is rather slow., This is due in part to its
complexity and in part to the very slow tape units used with the 7040.
A very rough estimate might be 1.5 minutes for one (or each) 75 card
program. Even for very short programs the compilation and loading time
will be at least 1 minute. For this reason the estimated maximum time
stated on the $ID card should make allowances for compilation as well as
execution time. At present the 3$ID card time is total time on the machine’
and extra time (for example, 3 minutes) should be allowed for the operator

to correct machine problems, change tapes, etc.
3. FORTRAN IV INPUT/OUTPUT

FORTRAN IV uses input/output statements of the form:

WRITE (N, FMT) list or
READ (N, FMT) list
where N is a unit number and FMT is the statement number of a format
statement. The unit assignments are as follows:
6, 1, 2, 3, 4 are tape units
5 is the system input unit (card reader)
6 is the system output unit (printer)
7 is the system punch unit ({card punch)
More detail on unit assignments is shown in Table 2 at the end of this paper.
Example:
READ (5. 37) A,B,C
37 FORMAT (1X,2F10.0,E16,5)

This would read a card with values for A, B, and C.

The card punch is available to users. It is rather slow (250 cards/
minute) and its use should be avoided if possible. The printer operates at

600 lines per minute.

If it is necessary to use tape units for intermediate storage during
a program, it is more efficient to use a binary mode I/O statement, This
is done by writing, for example,
WRITE (3) A,B,C
and later,

READ (3) A,B,C

where the 3 refers to tape unit 3 (see unit assignments on preceding page).
This type of statement causes the data to be written and read in 7040
internal form. Since it represents only temporary storage, there is no
need to transform it to the neat form used when a format statement is
specified. This type of statement should never be used with the reader,
printer or punch (units 5, 6, or 7).

If a program writes a large number of tape records (say > 100}, it
is often possible to greatly decrease running time by redefining the

FORTRAN files with a $FILE card. See the user consultant for details.

4. OFF LINE OUTPUT

Sometimes the computer operators switch the output to tape units
for later printing and punching by a smaller computer (IBM 1401). This is
called off line output. The system automatically takes care of switching

“unit assignments. That is, if a program says
WRITE (6,37) A,B,C

the system would write on tape rather than on the printer. This tape would
be listed later.

This off line output does not affect the user (indeed, he is not aware
of it) except for the time involved. The 7040 can write tape much faster
than it can print or punch. Thus a program which does only a little com-
puting and much printing will run faster if the output is off line.

If a program is going tc print or punch an unusually large amount of
output, the user should place a note on his envelope, advising the operator
to use off line output, if possible. A "large amount" is hard to define;
perhaps 2000 punched cards or 5000 printed lines would be a rough dividing

line. The user consultant can help with this problem.

5. FORTRAN ERROR MESSAGES

FORTRAN makes use of the IBMAP assembler and error messages are

produced by both FORTRAN and MAP. A sample listing is shown here:

ISN SOURCE STATEMENT
0 $IBFTC ILLUS
1 DIMENSION Y(10), X(10,10)
2 DO 1 1=1,10
3 1 X(I,3)=Y(I)+
5 IF (T .EQ, 1) A=A+l
10 IF (I .EQ. 1) A=A+T
13 READ(0) A, ((X(1,J),1=1,10,8,Y,J=1,10)
24 GO TO 8
25 STOP
26 END

the following error messages were produced:

2 STATEMENT 19 ERROR 1232 1SN-12 ILLEGAL MIXED MODE
0 STATEMENT 10 ERROR 1327 1I8SN-25 STATEMENT SHOULD HAVE A STATEMENT
NUMBER BECAUSE OF PRECEDING GO TO
2 STATEMENT 84 FERROR 26 85 IS AN UNDEFINED SYMBOL
HIGHEST SEVERITY WAS 2. EXECUTION DELETED

The first number in each error message line is the severity code;
0 and 1 are warnings only, 2 or 4 cause the job to be terminated. Next
appears STATEMENT XX; this is the statement number of the MAP translation
and is of no interest to the FORTRAN user. FRROR XXXX identifies the
error message; this can be ignored, If the sequence ISN-XX appears, XX
refers to the column of Internal Sequence Numbers to the left of the
program listing. The gaps in these numbers are caused by internal expan-
sion of the program. The ISN-XX number identifies the statement in error
and the err message which follows is usually quite helpful.

Some error message are from the MAP assembler and do not give an ISN
number. Often the MAP error messages are not very helpful, but the most
common one, given above, is useful. When FORTRAN statement numbers are

translated into MAP the letter S is added to each statement number.

Thus the missing symbol 8S means that statement number 8 is missing.
Looking over the program we see a GO TO 8, but there is no statement 8,
Usually errors referred to by MAP error messages can be cleared up by
correcting all errors found by the FORTRAN compiler (i.e., those with
ISN numbers).

EXECUTION ERRORS

Errors during execution take two forms: 1. Library subroutine
erxors, or 2. machine errors,

1. The library subroutines produce such messages as:

SQRT (-X) INVALID ARGUMENT

-B**C WHERE C IS REAL

ATAN1(0,0) INVALID ARGUMENTS

etc

After the message is printed, the subroutine returns a conventional
answer and execution continues. For example, the square root routine
uses the absolute value, etc.

Sometimes a floating point trap occurs. This is caused by the com~
putation of a real number too large (>1038) or too small (<10‘38) to be
stored in the machine. (The number zero is an exception, and does not
cause such a trap). The word trap means that the machine hardware recog~
nizes an error condition and interrupts the program Lo execute a special
routine. If the error was an underflow (number <10-38) the floating point
trap routine, FPT, will make the answer zero and allow the program to
continue. TIf the error was an overflow, FPT will print the message _

OVERFLOW and replace the number with the maximum allowed number. After
a set number (8) of overflows, the monitor will terminate the program.
2. Machine errors. These are errors that are non-computational in nature
and are detected by the machine hardware; rather than by a system sub-

routine. Two of these are very common:

ILLEGAL INSTRUCTION. This causes the program to be terminated
with the above message. This error is caused by the program attempting

to execute something that is not a valid instruction; e.g. data.

MEMORY PROTECT VIOLATION. This also causes the program to be
terminated with a message. The section of the memory which contains
the monitor is protected from changes by the user's program, which will

not reference this part of memory unless something goes wrong.

Both of these errors are almost always caused by array subscripts
going out of range. FORTRAN makes no check on subscripts before using
them. For example:

DIMENSION (A(50)

1=80

A(T)=12.7

the subscript T is out of range. This will probably cause another part
of the program to be altered, and possibly cause an instruction trap
(i.e., interruption because of an illegal instruction). The only other
comnoni source of these errors is an incorrect index in a computed GO TO
statement; e,g.,
Go TO (5,7,15,8),J

if J is other than 1, 2, 3, or 4 it is incorrect and will probably cause
an error.

FORTRAN sometimes produces messages such as:

FORTRAN HAS IGNORED ERROR n ANP TAKEN THE OPTIONAL RETURN TO EXECUTION

|
|
\
|
|
These error codes (n) are defined in Table 1 at the end of this paper.
|
|

10

6. FORTRAN IV provides the following library subroutines:

Y=EXP (X)
Y=SQRT(X)
Y=ALOG(X)
Y=ALOG10 (X)
Y=SIN(X)
Y=COS(X)
Y=TAN(X)
Y=COTAN (X)
Y=ATAN(X)
Y=ATAN2 (X,2)
Y=ARSIN(X)

. Y=ARCOS (X)

Y=SINH(X)
Y=COSH(X)
Y=TANH (X)
Y=ERF (X)
Y=GAMMA (X)
Y=ALGAMMA (X)

Y= eX where X and Y are real

Y= X
Y¥=log, X
Y=10g'| 0 X

frig functions have arguments in radians

Y=Arctan (X) Y in radians
Y=Arctan (X/z)

Y¥=Arcsin (X)

Y=Arcos (X)

Y=Error function (X)
Y=Gamma (X)
Y=log Gamma (X)

The above routines produce an accuracy of 8 significant digits. A

set of double precision routines are also provided for the above functions.

The following complex subroutines are provided:

X and Y here represent complex variables

Y=CSQRT (X)
Y=CEXP (X)
Y=CLOG(X)
Y=CSIN (X)
Y=CCOS (X)
R=CABS (X)

Y= JX
Y=eX
Y=10geX
¥Y=s5in X
Y=cos X

R=|X| where R is real

In general the above functions produce 8 significant digits for both

real and imaginary parts,

Thirty-one built in functions are provided, including the following

cCommon cnes:

X=ABS(Y)
J=TABS (K)

Y=AMAX1(X1,%¥2,X3,...XN) Y=largest value of the real arguments
J=MAXO(K1,K2,

absolute value of real Y

absolute value of integer K

Ll

.« .a KN J=largest value of the integer arguments

AMINT and MINO are included for minimum values

Y=REAL(Z)
Z=CMPLX (X,Y)
Z=CONJG(C)

¥= real part of complex Z
Z complex = X +iY X and Y are real

Z= conjugate of C Z and C are complex

7. USEFUL REFERENCES FOR FORTRAN ARE THE FOLLOWING:

FORTRAN TV
IBM
IBM
TBM
CIT

by McCracken; this is an excellent text for learning FORTRAN,
7040 Programmers' Guide; form €28-6318

7040 FORTRAN IV Language; form C28-6329

7040 Mathematical subroutines

User Manual

A1l of these are available in the bookstore.

The programmer's guide lists many control cards not mentioned above.

The general FORTRAN user will not need these, and, in any event, the

following should never be used without prior comsultation with the computing

center staff:
_$AITACH
SDATE
SENDEDIT
SIBEDT
$LABEL

S$8TOP

SCBEND $TIME
$DETACH SUNITS
STBCBC SUNLIST
SJEDIT

$LIST

$SWITCH

Table 1
FORTRAN ERROR RETURNS

Note: 2 = largest number in the machine
ERROR FORTRAN ERROR OP TIONAL
CODE___ EXPRESSION CONDITION RETURN
1 Y=Z#HR Z=R=20 Y =0
2 Y =Z %R Z=0and R < 0 Y =0
3 Y =TAN (X)
Y=COTAN(X) | x | = 220 =0
4 Y=TAX (X) X = Kg—, K 18 odd integer = =}
Y=COTAN(X) X = K7 , K is any integer = - {1
5 Y=SINH(X)
Y=COSH (X) X > 88,029692 Y = -0
7 Y=zkiR Z<0andR # 0 y=-|x|R
8 Y=EXP (X) X > 88,029692 Y =0
9 Y=ATAN2(Z,R) (Z,R) = (0,0) Y =0
10 Y=ALOG(X)
Y=ALOGIO(X) X = 0 Y =-0
1 X<0 Y = log|X]
12 Y = SIN(X)
Y = COS(X) | x| = 2% Y =0
13 Y=ARSTM(X)
Y=ARCOS(X) | X | > 1 ¥ el
14 Y=SQRT(X) X <@ Y=1|X]1/2

]For further information see:
IBM 7040/7044 Operating System (16/32K)
Subroutine Library
(FORTRAN IV Mathematical Subroutines)
Form C28-6806-1
Also IBM 7040/7044 Operating System (16/32K)
System Programmers Guide
Form (028-6339-3

ERROR FORTRAN ERROR OPTIONAL
CODE EXPRESS LON CONDITION RETURN

Let Complex X = R + 1Z

15 Y=CEXP (X) R > 88.029692 Y=(i{cos Z+i sin Z)
16 7= 225 Y = 0+ 0i)
17 Y=CLOG(X) X = 0+ 01 Y = -0 + 01
18 Y=CSIN(X)
Y| ccos (X) |z| > 88.029692 see manual
19 IR} = 223 Y = 0+ 0i
Y = -0 or ~-0i
20 yv-cammMA(x) 27'27 = x
Y=ALCGAMA(X) X = 32.843 Y =Q
21 X =0
x 951,54926(2129) Y -0
22 Y=DATANZ (RZ) {(R7z) = (0,0} ¥ =0

24 Y = DEXP(X) X > 88,029692 0

25 ¥ = DLOG(X)

Y = DLOGTIO(X) X = O T=-Q
26 X <0 = log|X|
27 Y = DSIN(X)

¥ = DCOS(X) | x| >2%n Y =0
28 Y = DSQRT(X) X <0 ¥ = |X|1/2

ERROR OPTIONAL
GCODE ERROR _CONDITION RETURN
31 Fxcessive floating point traps To XIT
32 Variable unit not defined To XIT
33 Attempt to backspace past beginning of To XIT
file
34 Attempt to write file back on system Ignore the opera-
input, output, or punch unit tion
35 Attempt to rewind the system input Ignore the opera-
output, or punch unit tion

36 Attempt to write on system input unit To XIT
37 Attempt to read on system output file To XTT

ERROR OPTIONAL :
CODE ERROR CONDITTION RETURN
38 File mark reading Read next file
39 Interval word count # IOCS count Process record read
40 Input list exceeds FORTRAN record Set remaining list
length ' items to zero
41 Output line has overflowed 1401 limit Treat as end of
format
42 Invalid input character Treat character as
Zero
43 Invalid input character Treat character as
blank
44 Invalid input character Treat character as
zero
45 Invalid character in variable FORMAT Treat character asg
end of rformat
46 L >4 Take no action
i I=0,1I>% Set J = 2
48 I =0,12>6 Set J = 2
49 Block sequence error Process the record
read
50 Check sum error Process the record
read
51 Block sequence and check sum errors Process the record
read
52 Permanent read redundancy Process the record
read
53 Attempt to write on unopened file Return to IOBS for
job termination
54 Buffer overflow Write as much of the
record as will fit
in buffer
55 Error in TOBS Type 2 or 3 record Set the word count to
control word actual number of
words remaining in
buffer.
56 Unexpected mode change Process the recoxd
that was read
39 Attempt to backspace the system out- Tgnore the operation
) put or punch file
60 Illegal GOTO Take first branch

Table 2

IBM 7040 UNIT ASSIGNMENTS

SYMBOLIC PHYSICAL UNIT FORTRAN
UNIT UNIT CHANNETL NUMBER UNIT

S.SLB1 T c 8
S.SLB2 T

5.SIN1 RD
5.5001
S.5ppPl
S.SCK1
5.5U00
$.suol
5.5002
S.5003
S.8U04
8.5U05
5.5U06
S.8007
S.5008
5.5U09
$.5U10
$.5U11
§.5U12
$.5U13

g
%

!
=t
~J

w oo W N - O

10
11
12

HHHHHHHHHI—IHHHHD—:‘
wWWWWﬂﬂOOQGWtﬁﬁOLﬂqu
'\JO\M-F‘-UJ'&JG\LHF-UJNMM—!N_L...A_A\D

Note: Logical units 8-12 do not appear in the IBM manuals, but
have been added to our system for the users' benefit.

T - TAPE

RD - CARD READER
PR - PRINTER
PU - PUNCH

