USER MANUAL

LINKAGE

PDP-9 Facilities

‘Carnegie-Mellon University
Hybrid Computation Laboratory
September, 1968

PREFACE

The linkage routines described in this section are those which
relate to PDP-9 facilities. These routines may be called by PDP-9
stand-alone FORTRAN IV programs, or may be called for additional facili-
ties in hybrid FORTRAN IV programs. Linkage routines relating to EAI 693
(hybrid interface) facilities are described in the EAI 693 LINKAGE

section of this manual.

Division

TABLE OF CONTENIS

1.0 Operator Communication

Accumulator (Sense) Switches

1.2 RSAC - Read Single AC Switch (Function)
1.3 RBAC - Read Bank of AC Switches
Automatic Priority Interrupt Control

API Hardware Description

API Software Utilization

INIT9 - Initialize (PDP-9 only)

2.0

4.0

1ol

.

(=

.

PULUNAp OO~V LEWN -

.

T

[l

PR WLWLLWLWENMNMNNNNNMNNDNNNDNNDRN

.
W N =

RAPI
SAPI
LEVL
RPRI
RELP
1 Eradi] &
0 APIS
1~Time
LTSH
LTRH
LTCH

Restore APIL

Suspend APL

Read Active API Level (Function)
Raise Priority Level (Function)
Release Priority Level

Initialize Software Level Interrupt
Read API Status

Clock

Load Timer Once and Set Handler
Load Timer Repetitively and Set Handler
Load Timer Continuously and Set Handler

DTIM - Disable Timer

ithmetic Routines

Normalization
MULT - Normalized Integer Multiply (Function)
DIVD - Normalized Integer Divide

PAGE 1-R1

21-R1
22
28
23
24
25

PAGE 2

INDEX OF TABLES

Table : Page

1. CMU Hybrid Lab API Utilization 7

PAGE 3

1.0 OPERATOR COMMUNICATION

The routines in this section enable the programmer/operator to
communicate with a running program from the PDP-9 console in an efficient
and convenient manner.
1.1 ACCUMULATOR (SENSE) SWITCHES

There are 18 toggle switches located in the right middle of the PDP-9
‘operator console (under the REGISTER display lights). These are the
accumulator switches, numbered from # to 17. The state of these
switches (up or down, 1 or @, respectively) can be monitored by the PDP-9

under program control. The PDP-9 (or analog/hybrid) user thus has 18

sense switches at his disposal.

1

A

PAGE 4

PROGRAM: Read Single AC Switch‘(Function)

Eégg: RSAC ‘

PURPOSE: 1. Read the state of an AC switch on the PDP-9 console.
AUTHOR: C. L. Cross

CALLING SEQUENCE: RSAC (ISWITCH)

ARGUMENTS: ISWITCH specifies the bit position (0-17) of the AC
switches to be read.

RETURN: RSAC is TRUE if the specified AC switch was in the UP
) position.
RSAC is FALSE if the specified AC switch was in the DOWN
position, or if an illegal switch was requested.

EXECUTION TIME: 32 to 4] psec

'STORAGE REQUIREMENTS: 27 locations

PROGRAMMING HINTS: RSAC must be declared LOGICAL in the
FORTRAN IV calling program,

e

PAGE 5

PROGRAM: Read Bank of AC Switches
NAME: RBAC

PURPOSE: 1. Read the state of all the AC switches on the
PDP-9 console.

AUTHOR: €. L. Cross

CALLING SEQUENCE: CALL RBAC (IPATTERN)

ARGUMENTS: Bits 0-17 specify the state of the corresponding AC

switches: if bit i of IPATTERN is "1", then AC
switch i was in the UP position; if bit i of
IPATTERN is "0", then AC switch i was in the DOWN
position.

EXECUTION TIME: 18 psec

STORAGE REQUIREMENTS: 12 locations

PAGE 6

2.0 AUTOMATIC PRIORITY INTERRUPT CONTROL

Tﬁe CMU Hybrid Computation Laboratory PDP-9 configuration includes
the Automatic Priority Interrupt (API) option. This option facilitates
those applications which require a sophisticated interrupt system.
2.1 API HARDWARE DESCRIPTION

The multilevel automatic priority interrupt option (API) affords
immediate access to data handling subroutiﬁes on a ranked priority basis.
Of the eight priority levels added by this option the four higher levels
are assigned to device (hardware) use, and the lower four are assigned
to software use. The priority levels are fully nested; i.e., a higher
priority request can interrupt in-process servicing of a lower priority.
The API identifies the source of an interrupt directly, through distinct
. channel assignments. Aléo included in this option are provisions for

prog;ammed raising of the active program segment to a priority level
higher than Fhe normal assignment; when the situation requires exclu-
sion of interrupt requests at specific priority levels. All API levels
are ranked above the standard program interrupt (PI - does not automat- .
ically distinguish the cause of the program interrupt), which is in
turned ranked above normal program segments of null priority (see
.Table 1).

The AFI operates in the following manner. A hardware device

requests service by transmitting an intgrrupt request signal to the

central processor on a line corresponding to its specific, preassigned
priority level. If this priority level is higher than the priority of

the device which requested.the currently active program segment, an

. interrupt is granted to the new device. Upon receipt of the grant

PAGE 7

. signal, the device transmits its channel-address back to the processor.
The processor then executes the instruction in this address, which is
always a jump-to-subroutine to the device service subroutine. The new
priority level is remembered and no further servicing of this or lower
priority ievels is permitted until the device service subroutine is
exited.

This priority network insures that high data rate or critical
devices will always interrupt slower device service routines while holding
stilllloﬁer priority interrupt requests off line until they can be

serviced,

TABLE 1. CMU Hybrid Lab API Utilization

PRIORITY - DEVICE ‘
highest - g hybrid interface - EAI 68§ overload

T ; interrupt

1 DEC tape

real-time clock

5 ,
= 2 paper tape reader
=) APT hybrid interface - general purpose
4 .
o ﬁ interrupts
ja!
&l 3 (reserved for dataphone to UNIVAC 11§8)
P
o 4
5 5
g software levels
= L 6

7

il paper tape punch

: teletype
lowest null normal program level

(no priority)

PAGE 8

22 SAPT SOFTWARE UTILIZATION

The chief advantage of this API system lies in the proper use of the
software levels. In the real-time environment, it is necessary to main-
tain data input/output flow, but it is not possible to perform long,
complex calculations at priority levels which shut out these data trans-
fers. With the API, a high priority data input routine which recognizes
'the need for the complex calculation éan call for it with a software
level dinterrupt. Since the calculation is performed at a lower
priority than the data handling, the latter can go on undisturbed.
Further, there is no need to interface the data collection routine with
the iowest priority (background) program which may run independently of
the real-time system.

The API also offers programmed priority changes. In order for an
interruptible program to change parameters in an interrupt service
subroutine, the priority interrupt system is normally turned off while
the changes are effected. Unfortunately, all interrupts are shut out
during this time including those that indicate machine errors or are
vital to control real time procesées. Thus, the API has been designed so
that a program segment may raise its priority only high enough to shut
oug those devices whose service routines require changes.

Since the Keyboard Monitor I/O handlers operate at API software level
4, program segments of priority & or higher cannot initiate 1/0 operations.

J
Also, no program segmentrcan initiate I/O on a device assignedrto a lower
priority than the program segment.
EXAMPLE 1:
Suppose a hybrid préblem has the following digital requirementQ:

1. Periodic (say 10 cps) interrupting of the digital program to sample
data being generated by the analog program.

2, Re-initialization of both the analog and digital programs whenever
the ‘analog overloads. :

PAGE 9

. 3. Updating of analog program parameters by the digital computer upon
occurrence of some special situation in the analog program.

Suppose further that #2 has the highest priority and #1 has the
lowest priority. An outline of a digital program which would satisfy
these requirements is as follows:

SUBROUTINE FAULT
THIS SUBROUTINE WILL BE ASSOCIATED WITH
EAI 68f OVERLOAD INTERRUPTS
WHEN THE 68¢ OVERLOADS, THE RUNNING PROGRAM
SEGMENT WILL BE INTERRUPTED AND CONTROL
"WILL BE PASSED TO THIS SUBROUTINE WITH API
LEVEL ¢ ACTIVATED, WHICH WILL EFFECTIVELY
SHUT OUT ANY OTHER INTERRUPTS
(re-initialize analog/digital programs)
EXECUTION OF THE FOLLOWING STATEMENT RELEASES
APTI LEVEL § AND RETURNS CONTROL TO THE
C INTERRUPTED PROGRAM SEGMENT
RETURN
END

() T8 e 8 i I X

(@l e]

SUBROUTINE TIME
. C THIS SUBROUTINE WILL BE ENTERED ONCE EVERY
1¢¢ MILLISECONDS UPON OCCURENCE OF A
REAL-TIME CLOCK OVERFLOW ON API LEVEL 1
EXTERNAL SAMPLE
THE FOLLOWING STATEMENT ENTERS A REQUEST
FOR EXECUTION OF SUBROUTINE SAMPLE
AT API LEVEL 5 (SOFTWARE) WHENEVER
THE DIGITAL HARDWARE CAN GRANT AN
INTERRUPT AT API LEVEL 5
CALL ISLI (5, SAMPLE, IERROR)
THE FOLLOWING STATEMENT RELEASES API LEVEL 1
RETURN
END

NG G)6 oo

(<)

SUBROUTINE GPIf

THIS SUBROUTINE WILL BE ASSOCTIATED WITH GENERAL
PURPOSE INTERRUPT § FROM THE ANALOG PATCHBOARD

THE SPECIAL SITUATION IN THE ANALOG PROGRAM WILL BE
PATCHED TO CAUSE THE GPI{ HOLE TO GO HIGH ON THE
ANALOG PATCHBOARD WHICH WILL CAUSE AN API LEVEL
2 INTERRUPT

(update analog program parameters)

THE FOLLOWING STATEMENT RELEASES API LEVEL 2

: 3 RETURN
‘I' END

O a & aa

(@]

(5]l il I 2 o T

(<2}

PAGE 10

SUBROUTINE SAMPLE :

THIS SUBROUTINE SAMPLES THE REQUIRED DATA FROM
THE ANALOG COMPUTER AND IS INITTATED BY
SUBROUTINE TIME

NOTE THAT IT IS EXECUTED AT API LEVEL 5
WHICH IS A LOWER PRIORITY THAN
THAN #2 OR #3 CONDITION PROCESSING

(sample data from the analog program)

THE FOLLOWING STATEMENT RELEASES API LEVEL 5

RETURN

END

MAIN PROGRAM

EXTERNAL FAULT, TIME, GPI@

INITIALIZE THE INTERFACE AND LINKAGE ROUTINES

CALL. INIT (IERROR)

ASSOCTATE SUBROUTINE FAULT WITH OVERLOAD INTERRUPTS

CALL IOVL (FAULT)

ASSOCIATE SUBROUTINE TIME WITH REAL TIME CLOCK INTERRUPTS
(6 x 16-2/3 MILLISECONDS = 100 MILLISECONDS = 10 CPS)

CALL LTICH (6,TIME,IERROR)

ASSOCIATE SUBROUTINE GPI§f WITH SPECIAL CONDITION (#3) INTERRUPTS

CALL IGPI (#,GPIf,IERROR)

(main program)

END

2

3

PAGE 11

PROGRAM: TInitialize (PDP-9 only)
NAME: INITY

PURPOSE: 1. To provide the necessary control and linkage for timer
and software level interrupt processing.

AUEHOR: (Go iy Gross

CALLING SEQUENCE: CALL INITY

ARGUMENTS: none

EXECUTION TIME: 27 psec

- STORAGE REQUIREMENTS: 122 locations

COMMENTS: 1. INIT9 is provided as an abbreviated version of INIT
(see hybrid interface linkage routines write-up) for those
FORTRAN IV programs which use the linkage routines in
this section only. In such a situation, either
INIT or INIT9 (but not both) may be used.

2. A call INITY9 statement is required before execution
o f ESHO N LTRESSEREH S DT AN S o BT,

3. Havoc results if a user attempts to load both INIT and
INIT9 from one FORTRAN IV program.

4. INITY9 may be called more than once: each time it is
called,the timer will be disabled and._the API system
will be re-initialized.

PAGE 12

2.4 PROGRAM: Restore API
NAME: RAPI
PURPOSE: 1. Enable the Automatic Priority Interrupt (API) system.
ATTTHOR=NG, L. Cross

CALLING SEQUENCE: CALL RAPI

ARGUNENTQ: none

EXECUTION TIME: 8 psec

STORAGE REQUIREMENTS : 5 locations

COMMENTS: 1. If the API system is already enabled, execution of RAPI
will have no effect.

20D

PAGE 13

PROGRAM: Suspend API

NAME: SAPT

PURPOSE: 1. Disable the Automatic Priority Interrupt (API) system,
AUTHOR: C. L. Cross

CALLING SEQUENCE: CALL SAPI

ARGUMEgEﬁ: none

EXECUTION TIME: 7 psec

STORAGE REQUIREMENTS: 4 locations

COMMENTS: 1. If the API system is already disabled, execution of SAPI
will have no effect.

2. The timer should be disabled before execution of SAPI:
uncoverable monitor errors will result if a timer
interrupt occurs when the API system is disabled.

PAGE 14

. 2.6 PROGRAM: Read Active API Level (Function)
NAME: LEVL

PURPOSE: T. Read the number of the currently
active API priority level.

AUTHOR: GC. L. Cross

CALLING SEQUENCE: LEVL (DUMMY)

ARGUMENTS: DUMMY is any dummy argument - it is never referenced.

1l

RETURN: LEVL number of currently active API
priority level (0-7); or
-1 if no API priority level is

currently active.

LEVL

I

EXECUTION TIME: for LEVL time = 16 usec
26 usec
36 psec
46 psec
56 psec
66 usec
76 ysec
86 ysec
= 89 usec

i I L I
|| S LT B |

Il

11

03
1
2,
3
’
5
6
7
-1

STORAGE REQUIREMENTS: 18 locations

PAGE 15

2.7 PROGRAM: Raise Priority Level (Function)
NAME : RPRI

PUREOSE: « 1. “Raise the API priority of the requesting
program segment,

AUTHOR: €. L. Cross

CALLING SEQUENCE: RPRI (ILEVEL)

ARGUMENTS: TILEVEL specifies the new priority level desired.

RETURN: RPRI is TRUE and the priority is raised to ILEVEL if
ILEVEL < LEVL (current API level).
RPRI is FALSE and the priority is unchanged if
ILEVEL = LEVL (current API level), or if an
illegal priority level is requested, or if the
API system is disabled.

EXECUTION TIME: 22 to 146 psec

STORAGE REQUIREMENTS: 41 locations

.. COMMENTS: 1. Program segments which call on RPRI may be
nested as long as successive calls of RPRI
request successively higher levels.

2. The PDP-9 will hang up (in an infinite loop)
if any I/O is attempted within a program
segment of priority 4 or higher; or if
high-speed punch or teletype I/O is attempted
within a program segment of priority 5, 6, or 7.

3. If RPRI is TRUE, then the priority was raised to
ILEVEL 4 psec before RPRI returned to the calling program.

PROGRAMMING HINTS: RPRI must be declared LOGICAL in the FORTRAN 1V
calling program.

PAGE 16

. 2.8 PROGRAM: Release Priority Level
NAME: RELP
PURPOSE: 1. Restore the priority of the last program
segment to raise its priority back to normal (null)
program priority.

AULHOR:" G., 1. Gross

CALLING SEQUENCE: CALL RELP

ARGUMENTS: none sl :

. EXECUTION TIME: 6 psec

STORAGE REQUIREMENTS: 3 locations

COMMENTS: 1. RELP has no effect if all program segments
are currently at normal (null) program priority.

2. RELP should not be used to debreak from the
HANDLER of LTSH, LTRH, LTCH, IGPI, or ISLI.

. 3. The highest active API priority level is
released 4 usec after initiating
execution of RELP,

FAGE 17

. 2.9 PROGRAM: 1Initialize Software Level Interrupt
NAME: TISLI

PURPOSE: 1. Request a software level interrupt and associate it
with a user's subroutine.

AUTHOR: C. L. Cross

CALLING SEQUENCE: CALL ISLI (ILEVEL, HANDLER, IERROR)

ARGUMENTS: TLEVEL specifies the software level interrupt to be
requested (4, 5, 6, or 7).

HANDLER specifies the parameter-less FORTRAN IV user -
subroutine which is to handle the software level interrupt.

IERROR indicates errors as follows:
IERROR = ﬁ no error
1 illegal software level requested
7 API system is disabled -
(ISLI cannot proceed)

EXECUTTION TIME: 69(4), 73(6), 74(5), or 76(7) usec

. STORAGE REQUIREMENT: 95 locations

. COMMENTS: 1. HANDLER is replaced by the system halt routine after
occurence of the software interrupt and before
"execution of HANDLER.

2, Execution of HANDLER is initiated 21 wsec after the
software level interrupt request is granted.

3. Control is returned to the interrupted program segment
12 usec after HANDLER RETURN's.

4. The PDP-9 will hang up (in an infinite loop) if any 1/0
is attempted within a program segment of priority 4; or
if high-speed punch or teletype I/0 is attempted within
a program segment of priority 5, 6, or 7.

5. A CALL INIT9 (or CALL INIT) statement must be executed
prior to calling ISLI.

PROGRAMMING HINTS: HANDLER must be declared EXTERNAL in any FORTRAN IV
program which contains a CALL ISLI statement.

PAGE 17.1

2.10 PROGRAM: Read API Status
NAME: APIS
PURBOSE: 1. Read the Status of the API system.
AUTHOR: Christopher L. Cross |

CALLING SEQUENCE: CALL APIS (IPATTERN)

ARGUMENTS: " Bits O and 2-17 of IPATTERN will specify the status of
the API system as follows:
bit §=1: API is enabled
- =@f: API is disabled
bit 2 + i=1: a device is requesting service on
APT level i, f<i<7y
=¢: no devices are requesting service on
API level i, @<i<7
bit 10 +i=1: API level i is active, @<i<7
=0: API level i is inactive, (<i<7
Bit 1 of IPATTERN is unused.

EXECUTTION TIME: 21 usec

STORAGE REQUIRED: 12 locations

COMMENTS: 1. A priority level is active if interrupt servicing
has commenced at that level, or if a raise priority
(see RPRI) has been executed to that level.

PAGE 18

. 3.0 REAL-TIME CLOCK

The real-time clock generates a clock pulse every 16.7 msec* (60 cps)
to increment a time counter stored in system memory. The counter initiates
a program interrupt on API level 1 when a programmed preset time interval is
completed. The clock can be enabled or disabled under program confrol. The
console CLK switch must be in the down position (or the entire console LOCKed)
to permit programmed control of the facility. Thé clock remains disabled
with the switch in the up position. Depressing the I/O RESET console key
also disabies the facility.

Four linkage routines are provided for control of ‘the clock facility.
LTSH provides a single time period for applications such as time delays. LTRH
and LTCH provide periodic time interval markers for applications such as

. regular data transferrals. DTIM disables the timer. Only time periods

which are multiples of 16-2/3 msec can be provided.

The PDP-9 will hang up (in an infinite loop) if any I/0 is attempted

within the HANDLER of LTSH, LTRH, and LTCH.

*NOTE: The first clock pulse after enabling the clock facility occurs
. anywhere from 0 to 17 msec later.

8Eil

PAGE 19

PROGRAM: Load Timer Once and Set Handler
NAME: LTSH

PURPOSE: 1. To cause an interrupt to occur after the specified time
duration.

AUTHOR: G, L. Cross

CALLING SEQUENCE: CALL LTSH (ITIME, HANDLER, IERROR)

ARGUMENTS: ITIME specifies the time duration before the interrupt
as follows: ¢t = (ITIME)*(]6—2/3 misec), where ITIME > O,

HANDLER specifies the parameter-less FORTRAN IV user
subroutine which is to handle the clock overflow
interrupt when it occurs,

IERROR indicates errors as follows:
IERROR = 0 no error
1 illegal ITIME requested (ITIME < 0)

EXECUTION TIME: 64 psec

STORAGE REQUIRENENTS: 51 locations

COMMENTS: 1. Calling LTSH, LTRH, or LTCH from subroutine HANDLER
(directly or indirectly) will result in unpredictable
errors if subroutine HANDLER does not RETURN within

“one (new) time period after calling LTSH, LTRH, or
LTCH. -

2. HANDLER is replaced by the system halt routine after
occurrence of the clock overflow and execution of -
HANDLER ., :

3. Execution of HANDLER is initiated 24 psec after the
clock overflow interrupt request is granted.

4. Control is returned to the interrupted program segment
20 ysec after HANDLER RETURNs,

5. A CALL INIT9 (or CALL INIT) statement must be executed
prior to calling LTSH.

6. If a timer interrupt occurs when the API system is
disabled an unrecoverable monitor error will result.

PROGRAMMING HINTS: HANDLER must be declared EXTERNAL in any FORTRAN IV

program which contains a CALL LTSH statement.

382

PAGE 20

PROGRAM: Load Timer Repetitively and Set Handler

NAME: LTRH

PURPOSE: 1. To cause the occurrence of variable-frequency real-time
interrupts whose period is dependent on interrupt

processing time,

AUTHOR: C., L. Cross

CALLING SEQUENCE: CALL LTRH (ITiME, HANDLER, ERROR)

ARGUMENTS: ITIME specifies the time period between interrupts as
follows: ¢t = (ITIME)*(16—2/3 msec) , where ITIME > O,

HANDIER specifies the parameter-less FORTRAN IV user
subroutine which is to handle the clock overflow
interrupts when they occur.

IERROR indicates errors as follows:
IERROR = 0 no error
=1 illegal ITIME requested (ITIME < 0)

EXECUTION TIME: 67 psec

STORAGE REQUIREMENTS: 53 locations

COMMENTS: 1., The first interrupt occurs one time period after calling
LTRH. Subsequent interrupts occur (14 microseconds + 1
time period) after HANDLER RETURNs.

2. Calling LTSH, LTRH, or LTCH from subroutine HANDLER
(directly or indirectly) will result in unpredictable
errors if subroutine HANDLER does not RETURN within
one (new) time period after calling LTSH, LTRH, or LICH,

3. Execution of HANDLER is initiated 24 psec after the
clock overflow interrupt request is granted.

4. Control is returned to the interrupted program segment
27 psec after HANDLER RETURNs.

5. A CALL INIT9 (or CALL INIT) statement must be executed
'~ prior to calling LTRH,

6. If a timer interrupt occurs when the API system is
disabled an unrecoverable monitor error will result.

PROGRAMMING HINTS: HANDLER must be declared EXTERNAL in any FORTRAN IV
program which contains a CALL LTRH statement.

PAGE 21-RI1

3.3 PROGRAM: Load Timer Continuously and Set Handler
NAME: LTCH
PURPOSE: 1. To cause the occurrence of variable—frequency real-time
interrupts whose period is independent of interrupt
processing time.

AUTHOR: €. L. Gross

CALLING SEQUENCE: CALL LTCH (ITIME, HANDLER, IERROR)

ARGUMENTS: ITIME specifies the time period between interrupts as
follows: t = (ITIME)*(16-2/3 msec), where ITIME > 0

HANDLER specifies the parameter-less FORTRAN IV user
subroutine which is to handle the clock overflow
interrupts when they occur.

IERROR indicates errors as follows:
IERROR = 0 no error :
1 illegal ITIME requested (ITIME < 0)

1l

EXECUTION TIME: 66 psec

STORAGE REQUIREMENTS: 52 locations

COMMENTS: 1. The interrupts will occur with a constant period of t,
regardless of the execution time 'of HANDLER. Thus,
results are unpredictable if HANDLER has an execution
time greater than t.

2. Calling LTSH, LTRH, or LTCH from subroﬁtine HANDLER
(directly or indirectly) will result in unpredictable
errors if subroutine HANDLER does not RETURN within
one (new) time period after calling LTSH, LTRH, or LTCH.

3. Execution of HANDLER is initiated 32 ysec after the
clock overflow interrupt request is granted.

4. Control is returned to the interrupted program segment
13 pysec after HANDLER RETURNs.

5. A CALL INIT9 (or CALL INIT) statement must be executed
prior to calling LTCH.

6. If a timer interrupt occurs when the API system is
disabled an unrecoverable monitor error will result.

PROGRAMMING HINTS: HANDLER must be declared EXTERNAL in any FORTRAN IV
program which contains a CALL LTCH statement.

PAGE 22

. 3.4 PROGRAM: Disable Timer
NAME: DTIM

PURPOSE: 1. To disable the variable-frequency real-time interrupts
initiated by LTRH or LTCH.

AUTHOR: C. L. Croess

CALLING SEQUENCE: CALL DTIM

ARGUMENTS: none

EXECUTION TIME: 16 psec

STORAGE REQUIREMENTS: 10 locations

COMMENTS: 1. If the clock is already disabled, execution of DTIM will
have no effect.

2. DTIM may be called (directly or indirectly) from
HANDLER of LTSH (redundant), LTRH, or LTCH. The
effect of such a call on DTIM will be to prevent
any further clock interrupts.

PAGE 23

. 4,0 ARITHMETIC ROUTINES

4.1 NORMALIZATION

The PDP-9 is an 18 bit word-oriented machine with floating point arith-
metic mechanized by system software routines utilizing the standard fixed
point (integer) hardware. Due to the emphasis on digital computer speed
"inherent in hybrid programming, the linkage routines are designed to
facil%tate use of the full precision of the 18 bit PDP-9 word. This is
accomplished by encouraging a normalized mode of operation in which all
numerical information transmitted from, or to, the (high-speed) linkage
routines is (or is assumed to be) in normalized integer form.

The use of normalized integer form in digital computer programming is
closely related to the machine unit scaling of analog computer programming.
All variabies are scaled between + and - one digital machine unit which is,
in the case of the PDP-9, 131,072 or 2]7. For hybrid communication purposes,
one digital machine unit is equivalent to one analog machine unit (10 volts

for the 680). To preserve the normalized form, all multiplication and divi-

sion must be accomplished with the MULT and DIVD linkage routines.

PAGE 24

. 4,2 PROGRAM: Normalized Integer Multiply (Function)
NAME: MULT

PURPOSE: 1. To perform a normalized integer multiplication of two
integer arguments.

AUTHOR: C, L. Cross

CALLING SEQUENCE: MULT (MPCAND, MPYER)

ARGUMENTS: MPCAND specifies the normalized integer multiplicand.
MPYER specifies the normalized integer multiplier.

RETURN: MULT = normalized integer product of MPCAND and MYPER,
(MULT = (MPCAND*MPYER)/131,072)

EXECUTION TIME: 50 (MULT = 0) or 52 (MULT < 0) psec.

STORAGE REQUIREMENTS: 23 locations

PAGE 25

. 4.3 PROGRAM: Normalized Integer Divide
NAME: DIVD

PURPOSE: 1. To perform a normalized integer division of two integer
arguments.

AUTHOR: C, L. Cross

CALLING SEQUENCE: CALL DIVD (IDIVND, IDIVSR, IQUOT, IERROR)

ARGUMENTS: IDIVND specifies the normalized integer dividend.
IDTIVSR specifies the normalized integer divisor.
IQUOT specifies the normalized integer quotient
(IQUOT = (131,072*IDIVND)/IDIVSR)
IERROR indicates errors as follows:
IERROR = 0 no error
= 1 IDIVND < IDIVSR

EXECUTION TIME: 87 to 89 wsec

STORAGE REQUIREMENTS: 46 locations

