THAT

A LANGUAGE MANUAL

COMPUTATION CENTER
PROGRAMMING STAFF

David Chou
162 Adrla Drive
Plttsburgh 20, Penmm.

David Chou
102 4rla Drive
Pilttsburgh 20, Penna.

T

Covers for this

manual will be

available (after 2|16|65) without chs
from the USER consultant

at Scaife Hall 316

TH.1.1

CHAPTER 1 - ELEMENTS OF "THAT'
1.0 INTRODUCTION

"THAT' is a symbolic assembly language designed for writing programs in
the machine language of the Central Processor of the CDC G-21 computer system
at the Carnegie Institute of Technology Computation Center. This manual will
describe the "THAT' language and the associated Assembly Program, which were
developed by the staff of the Computation Center. The reader may refer to the
G-20 machine language reference manual ('Central Processor/Machine Language
Manual', CDC G-20 Publication No. 61l1) for information on the logical organi-
zation, word formats, arithmetic rules, addressing scheme, and operations of
the Central Processor. SECTION 2 of the User's Manual describes the hardware
modifications which have been made to the Carnegie Tech system, converting it
from a G-20 into a G-21.

The "THAT' Assembly Program (or "Assembler') accepts a source program
containing code in the 'THAT' language, and translates ("assembles") it into
absolute binary machine language in core memory. This translation process is
generally one-for-one; thus, each 'THAT' statement, occupying a separate line
or "card image'" of the source program, is translated generally into a single
abolute binary instruction or data word. For this reason, 'THAT' is called
an "assembly" language.

The 'THAT' Assembler performs the translation with only one pass over the
source deck, assembling the absolute instructions directly into core memory
without the use of an intermediate "scratch tape'". Instructions from the source
program are (normally) assembled into the core locations from which they will
.subsequently be executed; at present there is no provision for automatic re-
location. As each card image of the source program is processed, its image
is listed on the printer along with the core location into which the corres-
ponding binary instruction is assembled.

The 'THAT' language is "symbolic'", meaning that symbols may be used for
machine addresses and mnemonic names may be used for operation codes. Since
it operates in a single pass, the "THAT' Assembler will encounter address
fields which contain symbols which have not yet been defined. The Assembler
keeps lists of all such occurrences of undefined address symbols, and when
the symbol is subsequently defined all references to it are properly '""fixed

up" in the assembled instructions in core memory. There are some important

TH.1.2

restrictions on the use of such undefined symbols, however, in particular,
a symbol which has not yet been defined cannot be used in a general address
expression including any arithmetic operations at assembly time (for example:
X1 + 2, or 2*L3 + KO).
The index field of a 'THAT' statement is further restricted: all symbols,
whether used alone or in assembly - time expressions, must be defined before
the index field is encountered. There is no provision for "fixing up'" undefined
symbols used in the index field.
In general, each line of 'THAT' code includes an operation code, either in
absolute octal form or (more frequently) as a three-letter mnemonic. These
mnemonics must be one of the following:
(1) A standard G-20 machine language opcode mnemonic, as listed in
the G-20 Reference Manual and in Appendix of this manual; or

(2) A "sudo" (pseudo-instruction) mnemonic. A sudo does not stand
for an actual machine command but is rather an instruction to
the '"THAT' assembler, to be executed when the sudo is encountered
during the assembly process. All 'THAT' sudos are listed in alph-
abetical order and explained in Chapter 3 of this manual.

TH.1.3

1.1 SYMBOLS

The purpose of symbols is three-fold: (1) The programmer can refer
symbolically to addresses which will not be known until the entire program
has been written and assembled. (2) The programmer can parametrize his
program and assign values to the parameters at assembly time, so that sizes
of buffers, data storage blocks, program segments, etc., can subsequently be
changed by simple reassembly runs. (3) The symbols can give some mnemonic
value to the program, aiding the programmer in the task of writing, debugging,
and changing the program,

Each "THAT' symbol has the form of a class name followed by an integer;
the integer is referred to as the "subscript'" part of the symbol. Class names
are one character, and can be any of the 26 letters or one of the four special

. These rules are summarized by the following

characters: —, «, —, or
Backus Normal Form:

<class name> ::= <letter> | - | « | » | <the mark '|"'>

<subscript> ::= <integer> | <empty>

<symbol> ::= <class name> <subscript>
Notice that the subscript can be omitted; this has the same meaning as a zero
subscript.
Examples:

L4

—27

|3

T (same as: TO)

The possible symbols are divided into 30 classes by the class names. All
symbols of a particular class will be either:

(1) Label symbols, whose values can be defined independently and in any

order; or

(2) Regional symbols, all referring to the same region and all bearing

a fixed relationship to each other.
These two kinds are discussed in sections 1.1.1 and 1.1.2, below. The one
class name 'A' has special significance, and is discussed in section 1.1.3.
Symbols are most frequently used to represent addresses with values
between 0 and 216 - 1, However, a symbol may be defined (by a 'DEF' sudo)

to have any value between 0 and 230 _ 1.

TH.1.4

1.1.1 ©LABEL SYMBOLS

All symbols with a particular class name can be declared to be label
symbols with a 'LBL' ("LaBeL'") sudo instruction. The 'LBL’ declaration
contains the class name character followed by the maximum subscript integer
which labels of the class will be allowed. For example:

LBL K20

declares a set of 21 label symbols: KO, Kl, K2, ..., K20, These symbols are
free and arbitrary and can be defined in any order with any set of values.
The symbols of the class are related only in that they occupy adjacent positions
in the symbol table created by the Assembler. This fact may be of importance
to the programmer who needs to reuse symbols or reclaim symbol table space
during assembly of very large programs; see the sudo instructions CHK, LBL,
and REL in Section 4 for more information. The maximum subscript given in

the "LBL' declaration is used by the Assembler to allocate symbol table space.

TH.1.5

1.1.2 REGION SYMBOLS
A class name will denote a region if:
(1) any symbol in that class is given a value (by a 'DEF' sudo
instruction), and if
(2) that class has not previously been declared to be label symbols
(by a "LBL' sudo instruction).

All symbols with a regional class name refer to the same region, and their
values are related in a fixed way: the symbol whose subscript part is the
integer n will stand for the nth memory address of the region. Thus, defining
any one symbol of the class defines them all.
Example: assume that R has not appeared in a "LBL' declaration; then:

DEF RO = 40
will make R a region whose first cell is address 40 (an index register). Then
all R symbols will be defined; e.g. R9 = 49, and in general Rn = 40 + n is any
integer constant. The following "DEF' operation would have the same effect:

DEF R9 = 49
The expression: RO + 23 is equivalent to the symbol: R23, if R is a region.

A class of symbols which has been used as a region can later be declared
in a '"LBL' sudo instruction and thereafter be used as independent label symbols.
Conversely, a class name which has been used for labels can be changed into a
region if all labels of that class are undefined with a sudo instruction of the
form:
REL <class name>

and if any one of the members of the class subsequently is defined in a DEF

sudo.

TH.1.6

1.1.3 THE 'A' SYMBOLS

The symbols in class 'A' have special significance in the 'THAT' language
and cannot be used as label symbols. The symbol "A" or "A0" always has as
value the current value of the Assembler's location counter, i.e. the memory
location into which the current instruction is to be assembled. After pro-
cessing each line of the source program, the Assembler increments the value
of '"A' by the number of binary words it has loaded into memory. The 'A' value
is printed on each line of the Assembly listing.

The 'A' symbols other than "AO" behave as if A were a region name; that is,
An has the value: A + n,

Example:

TRA A+ 3 (or: TRA A3)
has the same effect as:

LBL L2

Ll TRA L1 + 3

TH.1.7

1.2 EXPRESSIONS

Symbols may be used to build expressions, whose syntax can be defined

in Backus Normal Form as follows:

<TERM> ::= <DEFINED SYMBOL> | <INTEGER> | <OCTAL INTEGER> | <POWER OF TWC>
<OCTAL DIGIT> ::= 0|1|2|3|4|5|6|7
<DIGIT> ::= <OCTAL DIGIT> |8|9
<INTEGER> ::= <DIGIT> | <INTEGER> <DIGIT>
<OCTAL INTEGER> ::= /<OCTAL DIGIT> | <OCTAL INTEGER> <OCTAL DIGIT>
<POWER OF TWQ> ::- $<INTEGER>
<OPERATOR> ::= + |-|*
<EXPRESSION> ::= <TERM> | <EXPRESSION> <OPERATOR> <TERM> | <EMPTY>
EXAMPLES :

418

/17 * $12

Ll -6-L0%/3

Here <DEFINED SYMBOL> means a symbol whose value has been defined previously
in the assembly. The symbol may have been defined in any of the following
ways:

(1) It may be a regional symbol and therefore have received a value

from the 'DEF' sudo which defined the region.
(2) It may be a label symbol which has been explicitly defined by a
'DEF' sudo.

(3) It may be a label symbol which has appeared in the location field

of a previous instruction and therefore been defined with the value
of 'A' for that instruction.

An expression defined by these rules can be used in the address and index
fields of a line of "THAT' code. The meaning of an expression is obtained by
performing the indicated operations from left to right with no hierarchy and
truncating to 32 bits after each operation. Thus, 2 + 3%4 = 20.

The <TERM> "$n", where n is an <INTEGER>, has the value 2 t n; i.e.,

"$n" stands for a l-bit in bit position n of a logic word. An empty expression

or term will have the value zero.

TH.1.8

Expressions are generally used to represent G-20 (or G-21) addresses,
and their values will therefore be positive integers less than 2 t 16. The
rules for expressions outside this range are more complex, but are contained
in the following paragraphs.

The value of an expression is generally computed in logic format, and will

232 - L. The result of each arith-

therefore be a positive integer between 0 and
metic operation is shifted to zero exponent, truncated on both ends to 32 bits,
and made positive (by an 'STL' command in the Assembler). There is an exception
to the logic format, however; the right hand operand of each multiplication ('%?)
operation will be accessed numerically (by an 'MPY' command in the Assembler).
Thus, the expression:
$ 24 % /377
will be computed by 'THAT' to be /377000000; however, the expression with the
operands are reversed:
/377 * $24
will be computed to be 0 since the value $24 will be accessed numerically. In
the expression
/3 % $4 + 13 * $24
both $4 and $24 will be accessed numerically.
Although an expression is generally computed as a 32 bit logic word, the
final result may be truncated to a smaller field, determined by the way that
the expression is used. If an expression is used:
(a) as the address of a G-20 command, it will be truncated to 16 bits,
with the high-order bit stored as bit 30 of the command. See Section
2.6.
(b) in the index field of a G-20 command, its value must be between O and
63 or an error message will be printed. See Section 2.7.
(¢) in a '"DEF' sudo, the expression will be truncated modulo 2 t 30
(i.e., both flag bits will be set to 0). See Chapter 3 .
(d) in a '"LWD' or 'WRD' sudo, all 32 bits will be stored (EXCEPTION:

'WRD' sudo, if the expression is negative).

TH.2.1

CHAPTER 2 - SOURCE PROGRAM FORMAT

2.0 SUMMARY OF FORMAT

A line of 'THAT' language source code contains information in some or

all of the following fixed fields:

1. Language - Columns 1 - 2
2. Location - Columns 4 - 8
3. Flag - Column 13
4. Operation - Columns 15 - 17
5. Mode - Column 20
6. Address - Columns 24 - 67
7. Index - Columns 24 - 67
8. Comments - Columns
Immaterial - All other Columns
Example:
(Columns) e 2 2-
e s Pl Ll L2
|T1-1| |EZ+ | |2| |CLA|]ol |/77, R2; THIS IS A COMMENT
t 1 t t t 1 t t
L. 2. 3. 4. 5. 6. 7. 8.
2.1 LANGUAGE FIELD (Columns 1-2)

When card images are typed-in from a remote teletype, the language field

is used to set the meaning of the TAB key for the language.

will set the TAB
Tab Column
1 4
2 15
3 20
4 24
5 40

The mnemonic 'TH'

columns for 'THAT' card images as follows:

Field
Label

Opcode

Mode

Address, Index Register

Comment

For more details, see SECTION 2 of the User's Manual.

TH.2.2

2.2 LOCATION FIELD

In
to that
i U

(Columns 4-8)

general the location field will be blank unless a reference is made

line of code.

The location field may contain any of the following:

A label which is currently undefined. The effect is to define

that label by giving it the current value of the location counter

('A') .

An expression which equals the current value of the location counter.

This can be used for explanatory or documentary purposes.

Any string of characters starting with the letter 'A'. The contents

of the rest of the field will be ignored and can be used for a

comment.

Examples:

MPY

M5 105
LXP
E2 STZ
SXT
TRA

2.3 FLAG FIELD

20,
PO

3

E2

R2;
R2
R2;

(Column 13)

SHIFT RIGHT 5 OCTALS

SHIFT CONSTANT

ZERO A LOCATION IN MEMORY
DECREMENT AND TEST
LOOP

The flag field is used to specify the flag bits of the word generated.

FLAG COLUMN

i3
2
3

0 OR BLANK

FLAG BIT(S) LOADED

NONE

BIT 30

BIT 31

BITS 31 AND 30

Note that in the G-21 Central Processor, Flag Bit 30 has the special signif-

icance of the highest-order bit of the address. See Note 1, SECTION 4.1.3.

The flag field is ignored on all sudo instruction cards, unless the sudo is

'ADC', 'LWD', or 'NAM'.

TH.2.3

2.4 OPERATION FIELD (Columns 15-17)

The operation field may contain one of the following:

1. Blanks. The line will be processed as a 'COM' sudo, i.e., a
comment card.

2. An octal integer (without the preceding slash). In this case,
it will be interpreted as the operation part of a G-20 instruction
and the octal integer will be right justified in bits 29 to 21 of
the assembled instruction.

3. The three-letter mnemonic for G-20 operation. The corresponding
octal code will be loaded as part of the assembled instruction.
G-20 mnemonics are listed in the appendix.

4., The mnemonic for a "THAT' sudo. The action taken for the possible

sudos is described in Part 4.

2.5 MODE FIELD (Column 20)

Each G-20 mnemonic has associated with it a "normal" mode for that oper-
ation as described below. If the normal mode is desired, the mode field may
be left empty; otherwise, 0, 1, 2 or 3 must be punched. A mode punch always
supercedes the normal mode. The mode field of a sudo is ignored. (EXCEPTION:
See 'LWD' sudo, '"ADC' sudo and 'NAM' sudo.) Section 3 contains a summary of
the addressing modes.

All G-20 mnemonics are mode 2 except the following which are mode 0.

STI STL TRA REP
STS STZ TRM
STD

TH.2.4

2.6 ADDRESS FIELD (Columns 24-67)

The address field normally contains the operand or the address of the
operand. Blanks in the address field are ignored (except in 'ALF' sudo and
'NAM' sudo).

The address is terminated by a comma, a semi-colon, or Column 68 (which
is not scanned), whichever occurs first. If it is terminated by a comma, an
index is then expected.

The following applies to the address field only if the operation field
contains a G-20 mnemonic or an octal integer.

1. If it is blank, address (bits 14-0 and bit 30)of the assembled

instruction will be zero.

2. If it is a single symbol which is already defined, the value of the
symbol will be placed in the address (bits 14-0 and bit 30) of the
assembled instruction. If the symbol is a label which is not yet
defined, its value will be placed in the address when it is defined.

3. If it is an expression, the value of the expression will be entered
as the address in the assembled instruction. All symbols in the
expression must have been defined previously or an error message
will be printed. See 5.1.1.

If the operation field contains a G-20 mnemonic or the 'ADC' sudo, the
value of the corresponding expression must be less than 2 t 16 and is convert-
ed to the 15 and 1 bit format by G-21 commands; i.e., if bit 15 is non-zero,
bit 30 is set to one and bit 15 is set to zero.

EXAMPLES:

DEF A = /120000, PO = /124000, RO = /40;
CLA 3 PO, RO;

DEF . A = PO;
LWD P64;
After these cards are assembled, location /120000 contains /1 605 40
24000 (Note that bit 15 is shifted to bit 30). Location /124000 contains
/0 000 01 24100,

TH.2.5

2.7 INDEX FIELD (Columns 24-67)

If any index register is used, the address field must be terminated by
a comma, followed by a symbol or an expression whose value is the number of
an index register. Blanks in the index field are ignored, and the field is
terminated by a semi-colon or Column 68 (which is not scanned), whichever
occurs first.

The value of the expression in the index field is loaded right-justified
into bits 20-15 of the assembled instruction; if the value is not defined, an
error message will be printed. If the operation field contains a G-20 mnemonic,
an error message will be printed in the value of the index field is greater

than 63.

2.8 COMMENT FIELD (Columns 24-80)

All columns to the right of the first semi-colon in the address-index
field are ignored by the Assembler, and may therefore be used for comments.
Comments may extend to Column 80. All columns of the input line including
the 'AND' sequence number are printed (unless assembly printing has been

turned off).

TH.3.1

CHAPTER 3 - SUDO INSTRUCTIONS IN 'THAT'

3.0 INTRODUCTION

A sudo (pseudo-instruction) is an instruction to 'THAT' rather than a
G-20 command to be assembled for later execution. The mnemonic name of the
sudo is punched in the operation field of the source program card.
For all sudos the following holds:
1. The Location field is first treated as described in Section 2.2 for
machine commands.
2. The Flag and Mode fields are ignored (EXCEPTIONS: 'LWD' sudo, 'NAM'
sudo and "ADC' sudo.)
3. Thereafter, the specific action for the particular sudo takes place.

4, A sudo may be listable or non-listable: 'the parameter set given by

the address field of a listable sudo may be repeated, separated by
commas, as many times as desired in the space provided on the card
up to Column 67, while only one parameter set is allowed in the
address field of a non-listable sudo. The effect of a listable
sudo is the same as if the sudo was repeated on successive lines
with one parameter set per line; the parameter sets are processed
in the left-to-right order.

Section 3.1 contains a reference list of all sudos in 'THAT'., The re-
mainder of Chapter 3 consists of an alphabetical listing of the sudos, with
an explanation and examples of the use of each one.

The format used in explaining the sudos is as follows:

XXX EXPRESSION
LISTABLE

'"EXECUTE EXTRA EXEC'
The first line gives the three letter sudo name and the type and format of
the parameter set (s). The second line states whether the sudo is listable
or non-listable for sudos for which the concept is meaningful. The third
line contains a word or more describing the action of the sudo. (NOTE: the

above sudo is only a hypothetical example.)

THe 3.2
ADC CEXPRESSIONY>| C<EXPRESSIONY>» < INDEX>
NON-LISTABLE
ADDRESS CONSTANT®

THE FUNCTION OF 'ADC®* IS THE SAMEZ AS THE G-20
MNEMONIC ®*0OCA', EXCEPT THE NORMAL MODE IS ZERO RATHER
THAN TWO. *ADC',s USED FOR ADDRESS CONSTANTS, MAY
HAVE AN ADDRESS WHICH MUST BE LESS THAN 2+16 AND
MAY ALSO HAVE AN INDEX. *ADC® IS THE SUDD WHICH WwWOULD
NORMALLY BE USED WHEN COMMANDS ARE TO BE ASSEMBLED
AT EXECUTION TIME.

EXAMPLES:

ADC 1777773
1 OCA O /TTT77;

THESE TWO INSTRUCTIDONS ARE EQUIVA_ENT.

ALF (BLANK> {(STRING>|<(DIGIT> <(STRING)>
NON-LISTABLE
*ALPHANUMERIC?®

THE EFFECT IS TD LOAD THE G-20 INTERNAL
REPRESENTATION OF THE STRING DOF CHARACTERS INTD SUCCESSIVE
MACHINE LOCATIONSs 4 CHARACTERS PER WORDe THE DIGIT GIVES
THE NUMBER OF WORDS TO BE LOADEDs WITH A BLANK BEING
TREATED AS 1+ AND 0 BEING TREATED AS 10. THE BLANK OR
DIGIT MUST APPEAR IN THE FIRST POSITION OF THE ADDRESS
FIELDs COLUMN 24, THE STRING TO BE LOADED EXTENDS FROM
COLUMN 25 TO COLUMN (24+4K)s WHERE K IS THE NUMBER OF
WORDS SPECIFIED.

EXAMPLES?
wl ALF 4ERROR NUMBER ONE

THIS LINE WILL CAUSE THE LOADING OF

ERRO INTO wil

R NuU INTO wl+1

MBER INTO wil+2
ONE INTO W1l+3

THIS IS EQUIVALENT TO

wl ALF 1ERRO
ALF R NU
ALF MBER

ALF 1 ONE

CHK

THe3.3

{SYMBOL)>
LISTABLE

*CHECK?®

THE FUNCTION IS TO CHECK WHETHER DR NOT LABELS WHICH
HAVE BEEN USED ARE DEFINEDe THE SYMBOL MUST BE A LABELe.
IF ITS SUBSCRIPT IS ZERO OR BLANK, THEN THE SUBSCRIPT IS
CONSIDERED TO BE THE MAXIMUM ALLOWED SUBSCRIPT. THE
LABELS FROM <IDENTIFIER>0 TO <(IDENTIFIER>»SUBSCRIPT ARE
THEN CHECKED TO SEE IF ALL THOSE WHICH HAVE BEEN USED ARE
DEFINED IN CASE AN UNDEFINED LABEL IS ENCOUNTEDs AN
ERROR PRINT DUT TAKES PLACE WITH THE FOLLOWING FORM:
UND TS 26347 54362

THIS MEANS THAT THE LABEL TS5 IS UNDEFINEDs AND THAT
IT HAS LAST BEEN USED IN LOCATION /26347 AS A 16-BIT
CONSTANT AND IN LOCATION /54362 AS AN ADDRESS TO AN
INSTRUCTION.

THE CHECKING WILL CONTINUE UNTIL ALL THE
SUDO-PARAMETERS HAVE BEEN EXHAUSTED.

EXAMPLES:

LBL DS

LBL W10,

LBL R903

{ PROGRAM)

CHK DeW5sR}

ALL OF THE D*S AND R*'S AND WO TO WS ARE CHECKEDe

COM

cPYy

THe 3 4

(IMMATERIAL>
*COMMENT?®

THE REST OF THE LINE IS IGNORED.

EXAMPLES:

LBL L1;

COM THIS IS A COMMENT

DEF A=/30000;

L1 COM GEEsses ANOTHER COMMENT
THESE LINES WILL BE PRINTED. TWO L*S wILL BE DECLARED AS
LABELS AND L1 WILL BE GIVEN THE VALUE /30000 HOWEVER,s ND
CODE WILL BE COMPILED.
CEXPRESSIONY>», CEXPRESSION?>
LISTABLE
coPy?®

LET THE VALUE OF THE FIRST AND THE SECOND EXPRESSIONS
BE N1 AND N2, RESPECTIVELY.

THE NEXT N1 WORDS wILL BE FILLED BY COPYING FROM
THE LAST N2 WORDS ASSEMBLEDe. THAT 1S, THE WORDS IN
A-N2s A-N2+lsesesA—1 WILL BE COPIED REPEATEDLY
UNTIL N1 HAVE BEEN COPIED. N1 NEED NOT BE A MULTIPLE
OF N2; IF N1 = 0, NO WORDS WILL BE COPIED.

AFTER *CPY' HAS BEEN EXECUTEDs THE LOCATION
COUNTER 'A' HAS BEEN INCREASED BY Nl.

WARNING: IF THE LAST N2 WORDS CONTAIN ANY
UNDEFINED LABELSs, THESE WILL NOT LATER BE DEFINED IN THE
COPIES.

EXAMPLES:
w8 LWD 7737
LwWD w533
cPY 500+ 2

(W8B) AND (Ws8+1) WILL BE COPIED INTD THE NEXT 500 LOCATIONS.
El LwD 03
cPy 499,13

THE EFFECT IS TO CLEAR 500 LOCATIONS STARTING AT Ele.

DBG

DEC

THe 345

DEBUG"

THE FUNCTION IS TO TURN ON THE SELECTIVE TRACE
SWITCH IN MONITOR. IN RUNNING THE PROGRAMs ALL CDMMANDS
WITH A 2 FLAG (A 1 IN BIT 31) WILL BE LISTED ON THE
PRINTER IN THE FORMAT FOR MONITOR TRACEZ DESCRIBED IN THE
APPENDI X

A 'DBG' SUDO CARD MAY BE PLACED ANYWHERE IN THE
*THAT' DECK. COMMANDS MAY BE MARKED FOR TRACING EITHER BY
INSERTING A *FLG®' SUDO BEFORE, OR PUNCHING A 2 IN THE FLAG
FIELD (COLUMN 13) OF THE CARD WHOSE INSTRUCTION IS TO BE
TRACED

CIMMATERIAL>
*DECIMAL LISTING®

THE FUNCTION IS TO CAUSE SUBSEQUENT CONVERSION FOR
PRINTING OF THE CURRENT INSTRUCTION COUNTER AND REGION
AND LABEL ADDRESSES TU BE DONE IN DECIMAL.

EXAMPLES:

DEF A=/20000;

DEC PRINT IN DECIMAL

RGN I'H

AO 8192

NOTICE THAT THE REGIONAL SYMBOL IS CONVERTED IN
DECIMAL «

THe3e6

DEF {SYMBOL>={(EXPRESSION>»
LISTABLE

*DEFINE"

THE VALUE OF THE EXPRESSION WILL 3E CALCULATED AND
TAKEN MODULO 2+30s, AND THE SYMBOL WILL BE GIVEN THIS

VALUE.
IF THE LETTER OF THE SYMBOL HAS BEEN DECLARED AS A

LABEL, THE PARTICULAR LABEL GIVEN IS THEREBY DEFINEDe IF
THE LETTER IS NOT A LABELs THE CORRESPONDING REGIONAL BASE
IS DEFINED AS

CEXPRESSION>» — (SUBSCRIPT>
WHERE THE SUBSCRIPT NORMALLY EQUALS ZERDe.
EXAMPLES:
DEF A=/13000
THE MEMORY LOCATION FOR THE NEXT INSTRUCTION IS /13000,

LBL B30
DEF BO=/722750

THIRTY ONE B'S ARE DESIGNATED AS LABELS, AND BO IS GIVEN
THE VALUE /22750 Bls B2seses 330 ARE UNDEFINED.

DEF C10=/7000;

CO IS GIVEN THE VALUE /76766s AND ALL C*'S ARE DEFINEDe

DMP CEXPRESSIOND>{EXPRESSIUN>
LISTABLE
PRINTING BEFORE EXECUTION

*DUMP?

THE EFFECT IS TO GIVE AN OCTAL DUMP ON THE PRINTER
OF THE LOCATIONS FROM THE VALUE OF THE FIRST EXPRESSION UP
TO AND INCLUDING THE VALUE OF THE SECDOND EXPRESSION.

WARNING: THERE IS NO CHECK THAT THE VALUES ARE PROPER
MACHINE LOCATIONS.

ENT

FLG

THe 3.7

EXAMPLES:

DMP /21000,/722000

AN OCTAL DUMP WILL BE GIVEN FROM LOCATION /21000 UP TO
AND INCLUDING THE LOCATION /22000

DMP A-100,A-1;

AN OCTAL DUMP OF THF LAST 100 LOCATIONS WILL BE GIVEN.

CIMMATERIAL)>
TENTRY*

THE EFFECT IS TO UPSPACE THE PRINTER TWICE (IF THE
PRINTING IS ON)s AND ASSEMBLE AN ALL ZERO WORDe THIS SUDO
CAN BE USED FOR ENTRY INTO A SUBROUTINE. A LABEL
APPEARING IN THE LOCATION FIELD WILL BE DEFINED AS USUAL.

EXAMPLES:
P1 ENT SUBROUT INE

THIS DESIGNATES THE ENTRY INTO A SUBROUTINE THAT IS
REFERRED TO BY THE LABEL Ple. ZERO IS LOADED INTO THE
LOCATION Pl

C¢BLANK)>
'FLAG®

THE FUNCTION IS TO INSERT A 2 FLAG (BIT 31) IN THE
NEXT G-20 INSTRUCTION STORED. BECAUSE OPERAND ASSEMBLY
(0OA) COMMANDS ARE NOT TRACEDs, PLACING A *FLG® sSuDOo
BEFORE AN '0A' COMMAND CAUSES THE NEXT NON-*0A* COMMAND
TO BE TRACED.

EXAMPLES?:
DBG
FLG
P1 CAL DsI3
FLG
OCA 113 .
P2 STL Cs 123

THE COMMANDS LABELED P1 AND P2 WILL BZ TRACED.

TH.3.6
FPC {SIGNED DECIMAL NUMBzZr>
LISTARLE
*FULL PRECISION CUNSTANT?®

THE FUNCTION IS TO LUAD THE OCTAL REPR=ZSENTATION OF
THE DECIMAL NUMBER INTO THE NEXT TwWO LICATIONS.
WARNINGZ THE ABSOLUT: VALULE OF THZ NUMBE~R MUST BE LESS
THAN 3.450873173389,69 AND THe EXPUNENT LESS THAN 70, OR
AN EXPONENT OVERF_OW 4ILL OCCUR AT ASS=MBLY TIME.

EXAMPLES?

W10 FPC 10+4+000139,16
Wil FPC ~215+3444463,-5

W10 AND W10+1 WILL BE LOADED WITH 10, W10+2 AND W10+3
WILL BE LOADED WITH 4.000159%10+16, W1l AND W11+l WILL BE
LOADED WITH —2%10+45, AND W11+2 AND W11+43 WILL BE LOADED
WITH 3.44463%10+=-5, ALL IN STANDARD G-20 FULL PRECISIUN
FORMa W10 AND W1l MUST BE LABELS. SINCE THEY ARE NOT
IN ADJACENT LOCATIONS.

HPC (SIGNED DECIMAL NUMBER>
LISTABLE
HALF PRECISION CONSTANT®

THE FUNCTION IS TO LOAD THE OCTAL REPRESENTATION OF
THE DECIMAL NUMBER INTO THE NEXT LOCATION. THE MANTISSA
OF THE NUMBER IS ROUNDED TO SEVEN (OCTAL) DIGITS BEFOREZ

STORING

EXAMPLES?

wlz HPC O0s1+2+35
HPC —4e15—63

0s 13 2+ 35 AND =-4.15%10+-6 WILL BE LOADED INTO FOUR
CONSECUTIVE LOCATIONS STARTING AT W12

WARNING IT IS A DETECTABLE ERROR IF A NUMBER WHOSE AB-
SOLUTE VALUE IS GREATER THAN (8+7-1)%8+63 1S PUNCHED.

LBL

THe3.9
<SYMBoOL>
LISTABLE
*LABEL"

THE LETTER IS DECLARED TO BE A LABEL. IF THE LETTER
HAS NOT PREVIOUSLY APPEARED IN A 'LBL®* SUDOs THEN THE
SUBSCRIPT IS THE MAXIMUM SUBSCRIPT WHICH MAY BE USED
FOR THAT LABELe

IF THE LETTER HAS PREVIOUSLY APPEARED IN A
"LBL' SUDD, ITS NEW SUBSCRIPT MAY NOT BE GREATER THAN THE
SUBSCRIPT FIRST DESIGNATED UNLESS THE LABEL HAS FIRST BEEN
RELEASED BY THE *REL' SUDO OR ELSE IT IS AN ERROR. THE
FOLLOWING ACTIONS TAKE PLACE:

FIRST, THE OPERATION OF A *CHK®* SUDD IS DONE ON THE
SYMBOL « THEN THE LABELS FROM <(LETTER>O TO
CLETTER><SUBSCRIPT> ARE CLEARED TO USZ AGAIN, WHILE ANY
LABELS GREATER THAN THE SUBSCRIPT APPEARING IN
CLETTERD>{SUBSCRIPT> ARE LEFT UNTQUCHED.

IN CASE *CHK?* FINDS ONE OR MORE UNDEFINED LABELS
AN ERROR MESSAGE WILL BE PRINTED (SEE *CHK®') AND THE VALUE
OF THE LABEL WILL BE CLEARED FOR REDEFINITIONe.

EXAMPLES?

LBL D10

DO THROUGH D10 WILL BE PERMITTED FOR USE AS LABELS.

(PROGRAM)
LBL D7
(PROGRAM)

THE LABELS DO THRDUGH D7 WwILL BE CLEARED FOR REDEFINITION
AS NEW LABELS. WITH AN ALARM MESSAGE PRINTED
IF ANY ARE UNDEFINEDe

LIN

LWD

. THe3.10
{EXPRESSION?>»
NON-LISTABLE
CARD IMAGE NOT PRINTED
LINE?
THE FUNCTION IS TO UPSPACE THE PRINTER
N=C¢EXPRESSION)> LINESs IF PRINTING IS ON.
IF N = 0 DR THE ADDRESS FIELD IS 3LANK, 1 LINE UPSPACC
WILL OCCURe

EXAMPLES:

CLA P93
LIN 23
EXL K213

ABOVE ARE THE CARDS AS THEY WERE PUNCHEDe. BELOW 1S
THE COMPILATION OF THE CARDS.

CLA P9;

EXL K213

NOTICE THAT 2 LINES WERE SKIPPED AND THE *LIN?®
SUDO WAS NOT PRINTED.

CEXPRESSIONY>| CEXPRESSION> +{EXPRESSION>
LISTABLE
LOGIC WORD®

THE EFFECT IS TO LOAD THE VA_UE OF THE EXPRESSION
INTO THE NEXT MACHINE LOCATION AS A LOGIC WORD
(IeEe WITH AN *STL®* COMMARND) . ANY PUNCHING IN THE
FLAG DR MODE FIELD WILL TAKE PRECZDENCZ OVER THE INFORMATION
THAT WOULD OTHERWISE BE LOADED INTO BITS 28 TO 3le.
IF THE ADDRESS EXPRESSION IS TERMINATED BY A
CUMMA AN INDEX REGISTER IS EXPECTZD AND WILL TAKE
PRECEDENCE OVER THE INFORMATION IN BITS 15 TO 20.
NO CHECKS ARE MADE TO SEE IF THE VALUES OF THE
EXPRESSIONS ARE WITHIN THE LIMIT OF THE FIELDS.

EXAMPLES?:

DEF A=/720000;
LBL E235

20000 EO LWD /7350 + B4
20001 E1 LwD 1 /TTTT+31;
20002 E2 LWD ZTTTTTT7777773

THE VALUE DOF /350+%4 = /370 WwILL BE LOADED INTO
LOCATION 20000 (EO)s /Z/7777+31+ BIT 28 (MODE 1 PUNCH) =
/2000010001 WILL BE LOADED INTO LOCATION 20001 (El)s AND
/37777777777 WILL BE LOADED INTO LOCATION 20002 (E2).

MTT

NAM

THe3.11

CEXPRESSION>
NON-LISTABLE
PRINTING BEFORE EXECUTION
MARK TRANSFER TO
THE FUNCTION IS TO CHECK THAT NO ASSEMBLY ERRORS
HAVE DCCURRED AND THAT ALL USED LABELS ARE CURRENTLY DE-
FINEDe IF NO ERRORS ARE DETECTED, 'THAT®' EXECUTES A *TRM®'
TO THE LOCATION DEFINED BY <EXPRESSION>. THE ROUTINE
MAY RETURN THROUGH ITS MARK IF ASSEMOLY IS TO
CONTINUE OR TRANSFER CONTROL TO THE MONITOR BY EXECUTING
THE MONITOR HALT ROUTINE.
EXAMPLE =
El ENT ZERO DATA REGION
LXP 0 100,R1;
E2 STZ DsR13;
SXT 0 1.R13
TRA E2;
TRA 1 E1;
CHK E;
MTT El;
THE SIX INSTRUCTIONS STARTING AT =1 WILL BE ASSEMBLED
AND EXECUTED. ASSEMBLY WILL THEN CONTINUE.
¢STRING)>
NON-LISTABLE
" NAME *
THE EFFECT IS TD PACK THE SIX BIT REPRESENTATION OF
THE S CHARACTERS IN COLUMNS 24 TO 28 INTO THE RIGHTMOST
30 BITS OF THE NEXT MACHINE LOCATIONe. ANY PUNCHING IN
THE FLAG OR MODE FIELD WILL TAKE PRECEDENCE OVER THE
INFORMATION THAT OTHERWISE wOULD HAVE BEEN LOADED INTO
BITS 28 TO 3l.
EXAMPLES:

NAM PN3«%

THE 6 —-BIT REPRESENTATIONS OF THE CHARACTERS Ps N» 3»
AND $ WILL BC LOADED INTO THE NEXT MACHINE LOCATION.
THIS IS THE SAME AS

LwWD /720 16 43 53 653

THe 312

ocT CIMMATERIAL?

*OCTAL LISTING?

THE FUNCTION IS TO CAUSE SUBSEQUENT CONVERSION FOR
PRINTING OF THE CURRENT INSTRUCTION CUOUNTER AND REGION
AND LABEL ADDRESSES TO BE DONE IN OCTAL. (SEE 'DEC').
"UCT" IS ASSUMED WHEN ASSEMBLY BEGINS.

EXAMPLES:

DEF A=8192;
ocT PRINT IN OCTAL;S
RGN A

AO 20000

NOTICE THAT THE REGIONAL SYMBOL IS CONVERTED TO
OCTAL.

oPM < IMMATERIAL?>

OPERATOR MESSAGE®

THE FUNCTION IS TO PRINT THE CURRENT TIME,
DATE AND OPERATOR INFORMATION. COLUMNS 24 TO 80 OF THcE
INSTRUCTION CARD ARE REPLACED BY THE ABOVE INFORMATION.

EXAMPLES:

oPM OPERATORDIO1 01 JUL 54 23S S
*+ L +
OPERATOR DATE TIME

THIS IS THE LISTING WITH THE OPERATOR MESSAGE.

ouT

PAG

PBC

THe3.13
CEXPRESSION)>
NON-LISTABLE
PRINTING BEFDRE EXECUTION
*ouTt?

THE EFFECT OF THE *0OUT* SUDODO IS TO CHECK THAT NO
ASSEMBLY ERRORS HAVE OCCURED AND THAT ALL USED LABELS ARE
DEFINED. IF NO ERRORS ARE DETECTEDs °*THAT' EXECUTES A
*TRA' TO THE LOCATION DEFINED BY <EXPRESSION>.

IT IS A DETECTABLE ERROR IF THIS LOCATION IS NOT A
VALID MACHINE ADDRESS.

EXAMPLES:

(PROGRAM)
ouT El

CONTROL WILL BE TRANSFERRED TO LOCATION Ele EITHER
THIS SUDO OR *MTT*' IS NORMALLY USED TO START EXECUTION OF
A PROGRAM.

{IMMATERIAL?>
PRINTING AFTER EXECUTION

*PAGE?"

IF PRINTING IS TURNED ON, THE PAPER IN THE PRINTER
WILL BE MODVED TO THE NEXT PAGEe.

CEXPRESSIONYs CEXPRESSION) |
CEXPRESSIONY» (EXPRESSIONYs1
NON-LISTABLE
PRINTING BEFDRE EXECUTION
PUNCH BINARY CARDS?

THE FUNCTION IS TO PUNCH A ROW-BINARY DECK OF THE
MEMORY LOCATIONS FROM THE ADDRESS GIVEN BY THE FIRST
EXPRESSION UP TO AND INCLUDING THE ADDRESS GIVEN BY THE
SECOND EXPRESSION. IF A THIRD PARAMETER '1' APPEARS
THE SYMBOL TABLE WILL BE PUNCHED. THUS IT IS POSSIBLE
LATER TO ADD TO OR TO CORRECT A PROGRAM WITH THE USE OF
SYMBOLS AFTER LOADING THE ROW-BINARY DECK (BY MEANS OF THE
RBC SUDO DR THE MONITOR BAR ROUTINE)e.

WARNING: THERE IS NO CHECK ON THE VALUES BEING
PROPER MACHINE LOCATIONS.

THe3.14
EXAMPLES:

PBC /720000+:W53s1

A ROW-BINARY DECK WILL BE PUNCHED FROM LOCATION /20000 TO
THE LOCATION OF WS53. THE SYMBOL TABLE WILL ALSO BE

PUNCHED «
PRT <SYMBOL)>
LISTABLE
PRINTING BEFDRE EXECUTION
*PRINT®

THE FUNCTION IS SIMILAR TO "CHK®', BUT IN ADDITION,
IF THE PRINTING IS ON, THE VALUES OF ALL USED LABELS WILL
BE LISTED ON THE PRINTERe.

EXAMPLES:
PRT Ws P, Ds Q103

ALL THE USED LABELS OF THE SYMBOLS W, P, D AND QO TO Q10 AND THE
LOCATIONS TO WHICH THEY HAVE BEEN ASSIGNED ARE LISTED ON
THE PRINTERS

RBC CEMPTY >
NON-LISTABLE
PRINTING BEFORE EXECUTION
*READ BINARY CARDS!'

THE FUNCTION IS TD LOAD A ROW-BINARY DECK AS PREPARED
BY THE *PBC'-SUDO (EITHER WITH OR WITHOUT THE SYMBOL
TABLE) . THE ROW BINARY DECK SHOULD FOLLOW IMMEDIATELY
WITH ND BLANK CARDS PRECEEDING ITe TWD BLANK CARDS SHOULD
BE PLACED AT THE END OF THE BINARY DECK BEFORE THE
REMAINING *THAT' CARDS.

THE PROGRAM PORTION OF THE *PBC'-DECK IS READ INTO

THE SAME MACHINE LOCATIONS FROM WHICH IT WAS PUNCHED AND
THE SYMBOL TABLE PORTION (IF PRESENT) IS READ INTO THE
'THAT®* SYMBOL TABLE REPLACING THE SYMBOL TABLE BEING USED
PRIODR TO THE *RBC*' SUDO.

NDTE: THIS CANNOT BE DONE FROM *AND®' FILES.

THe 3615
REL {SYMBOL>
LISTABLE
*RELEASE"®

THE FUNCTION IS TO RELEASE LABELS] IeEea» TO CLEAR
THE DEFINITION OF A LETTER AS A LABEL S0 THAT IT
CAN BE USED THEREAFTER AS A REGION (OR A NEW LABEL)e.

FIRST *CHK?®* IS PERFORMED. IF NDO UNDEFINED LABEL 1S
ENCOUNTEREDs, THE LETTER IS THEN MARKED AS UNUSED. UNDER
CERTAIN CIRCUMSTANCES THE SPACE USED FDR THE LABEL TABLE
WILL ALSD BE RELEASEDs THIS WILL OCCUR IF THE LETTER
BEING RELEASED IS THE LAST LETTER DECLARED AS A LABELs OR
IF ALL LETTERS DECLARED SINCE HAVE BEEN RELEASED AND THEIR
SPACE RECLAIMED.

IF AN UNDEFINED LABEL IS ENCOUNTERED BY *CHK®'s AN
ERROR MESSAGE WwILL BE PRINTED (SEE *CHK®') AND THE ERROR

IGNORED
EXAMPLES:
LBL R10
(PROGRAM)
REL R
LBl R11

THE SET OF LABELS RO THROUGH R10 IS RELEASED AND THEN
A NEW SET OF LABELS RO THROUGH R11 IS DEFINED.

RET <IMMATERIAL?>
PRINTING BEFDRE EXECUTION

'*RETURN?!

THIS SUDO WILL EFFECT A RETURN TO THE LOCATION MARKED
AS THE LAST CALL OF "THAT ' .

EXAMPLES:
RET EXIT FROM THAT

CONTROL WILL RETURN TO THE PROGRAM WHICH CALLED *THAT?®
AS A SUBROUTINE (USUALLY THIS WILL BE THE MONITOR).

TH«3.16
RGN {SYMBOL>
LISTABLE
*PRINT REGIONAL SYMBOL®

THE FUNCTION OF THE *RGN®' SUDO IS TO CHECK THAT
THE <SYMBOL> IS A DEFINED REGIONAL SYMBOL.
IF THE PRINTING IS ON THE VALUE OF THE SYMBOL IS PRINTED
AS IN *PRT'.

DEF P=/720000;
RGN P2013

P201 20311

P201 IS A DEFINED REGIONAL SYMBOL-LOCATION 20311.

SXX (EXPRESSION)>
NON-LISTABLE
"SET STORAGE EXTRACTOR?®

THE VALUE OF THE EXPRESSION WILL BE STORED AS THE
INTERNAL STORAGE EXTRACTOR IN *THAT'. NORMALLY THE
STORAGE EXTRACTOR IS Oe

WHENEVER A WORD IS STORED BY *THAT?® IT IS DONE AS
FOLLOWS?:

CAL 3 INSTRUCTION COUNTER (A)
EXL STORAGE EXTRACTOR
ADL WORD TO BE STORED
STL 1 INSTRUCTION COUNTER (A)

THUS PSXX®* CAN BE USED WHEN PARTS OF ALREADY LOADED
WORDS HAVE TO BE CHANGED.

EXAMPLES:

BEF A=/710000

El LwWD V77775
LWD /17373
LWD /17313
SXX ;777
DEF A=E1l;
LwD /24000
LWD /35000
LWD /71000

SXX 0

Top

WRD

THe3.17

FIRST THE INITIAL LOCATION IS DEFINEDe. THEN THE
LOGIC WORDS /17777 /17373, AND /17313 ARE LOADED INTO
THE FIRST THREE LOCATIONS, AND THE STORAGE EXTRACTOR IS
SET TD /7 T77. THE LOCATION IS AGAIN GIVEN AS E1 FOR
THE LOADING OF /24000, /35000, AND /71000 THUS THE VAL-
UES /24777, /35373, AND /71313 WILL BE STORED IN LOCATIDONS
Els EL1+1 AND El+2. THE LAST LINE WILL RESET THE
STORAGE EXTRACTOR TO ZEROD.

CEXPRESSION?>
PRINTING AFTER EXECUTION

*TYPE OR PRINT®

THE EXPRESSIDN, WHICH 1S TAKEN MODULO 2,
DETERMINES WHETHER OR NOT THE INPUT LINES WILL BE
LISTED ON THE LINE PRINTER,s AS FDOLLOWS:

0: PRINTING OFF

13 PRINTING ON

WHEN PRINTING IS DOFF ALL ACTION INVOLVING THE
PRINTER WILL BE BYPASSED EXCEPT ERRDR MESSAGE PRINTOUT.

{SIGNED EXPRESSION?>

LISTABLE

WORD

THE EFFECT IS TO STORE THE VALUE OF THE EXPRESSION
INTO THE CORE LOCATION SPECIFIED BY THE LOCATION COUNTZR *A‘.
IF THE VALUE DF THE EXPRESSION IS NEGATIVE, °*WRD®' WILL
STORE IT INTO MEMORY AS AN INTEGER (IeEe WITH AN *STI®
COMMAND) 3 IF POSITIVE, IT WILL BE STORED AS A LOGIC WORD
(leEe WITH AN *STL®* COMMAND).

EXAMPLES:

wa WRD -/735+8

W8 WILL BE LOADED WITH THE NEGATIVE INTEGER /725

W10 WRD LTTTTTT77777

W10 WILL BE LOADED WITH THE LOGIC WORD /37777777777.

THe4.a 1
CHAPTER 4 — ERROR MESSAGES

4.1 ERROR DETECTED DURING COMPILATION

ANY ERROR DETECTED BY *THAT®* DURING THE PROCESSING OF A
LINE WILL CAUSE A PRINT OUT OF THE LINE OF CODE FOLLOWED BY AN
ERROR MESSAGEs AS FOLLOWS.

4elel ERRORS IN G-20 INSTRUCTIONS

AD U UNDEFINED CONSTRUCTION IN ADDRESS FIELD OF G-20
INSTRUCTION

AD > THE VALUE OF THE EXPRESSION IN THE ADDRESS OF A G-20

INSTRUCTION WITH MNEMONIC OPERATION IS NOT LESS
THAN 2+16.

FLAG ERROR IN THE FLAG FIELD OF A G-20 INSTRUCTION

IR U UNDEFINED CONSTRUCTION IN INDEX FIELD OF A G-20
INSTRUCTION

IR > VALUE OF THE EXPRESSION IN INDEX OF A G-20
INSTRUCTION WITH MNEMONIC OPERATION IS NOT LESS THAN
64.

LABL ERROR IN ENTRY FIELD

MODE ERROR IN THE MODE FIELD OF A G-20 INSTRUCTION

DPER ERROR IN OPERATION FIELD

THed4 .2
4ele2 ERRDRS IN SUDO INSTRUCTIONS

AD U UNDEFINED CONSTRUCTION WHERE AN EXPRESSION IS
NEEDED IN THE ADDRESS FIELD OF A SUDD.

A U *A* [S NOT WITHIN BOUNDS OF MEMORY. (UPON STORING A WORD)
FLAG ERROR IN PARAMETER TO *FLG' SUDD

LBL> A SUBSCRIPT ON A LABEL SYMBOL IS GREATER THAN ALLOWED
TERM UNDEFINED CONSTRUCTION WHERE A SYMBOL IS WANTED IN

THE ADDRESS FIELD OF A SUDO.

WHAT A LETTER WHICH HAS NOT BEEN DECLARED AS A LABEL
APPEARS IN A SYMBOL IN THE ADDRESS FIELD OF A SUDD
WHERE A LABEL SYMBOL IS REQUIRED.

413 NOTES

NOTE 1 A ONE FLAG OR A THREE FLAG HAS BEEN PUNCHED IN
FLAG COLUMN OF A G—-20 MNEMONIC AND HAS ALTERED
THE EFFECTIVE DPERAND ADDRESS OF THE INSTRUCTION.

NOTE 2 AN *XEQ' DPCDDE HAS BEEN PUNCHED WITH A MODE
0 OR 1 AND WILL CAUSE AN OPCODE FAULT IF EXECUTED.

THe4.3
4.2 ERRORS DETECTED DURING RUNNING

ADDRESS-0PCODE FAULT:

AN ADDRESS OPCODDE FAULT 1S DETECTED WHENEVER THE G-20
ATTEMPTS TO PROCESS A COMMAND INSTRUCTION IN WHICH ONE OR
MORE DF THE FOLLOWING DCCURS:

le THE BIT CONFIGURATION IN THE OPERATION FIELD
(BITS 21-29) IS NOT A LEGAL G-20 OPERATION

2e THE ADDRESS OF THE NEXT COMMAND TO BE EXECUTED
1S NOT WITHIN THE LIMITS OF MEMORY.

3. AN OPERAND ILLEGAL TDO A G-20 COMMAND IS COMPUTED
(THIS FREQUENTLY OCCURS IN MODE 3 ADDRESSING-
(SEE SECTION 3) OR WITH A PRECEDING *0OCA*').

DIAGNOSTIC PRINTING:

36000 3 305 77 77777 A +00000000000000 +00 0000077
1 2 3 4 5 6 7 8 9

le ADDRESS OF THE COMMAND INSTRUCTION
2e FLAG
3. MODE AND OPCODE

4e INDEX REGISTER
Se ADDRESS
6e *A* TO INDICATE ADDRESS OPCODE FAULT

Te SIGNED ACCUMULATOR
Be SIGNED EXPONENT
9e CONTENTS OF INDEX REGISTER (IF ONE WAS USED)

THe4 e 4
EXPONENT OVERFLOW?

IFs, DURING COMPUTINGs THE EXPONENT OF THE ACCUMULATORs THE
DPERAND ASSEMBLY REGISTER OR THE ARITHMETIC UNIT BECOMES TOO
LARGE, AN EXPONENT OVERFLOW INTERRUPT IS GENERATED AND ONE LINE
OF DIAGNOSTIC OUTPUT IS PRINTED. THE FORMAT OF THE PRINTING IS
THE SAME AS FOR AN ADDRESS OPCODE FAULT WITH THE EXCEPTION THAT
FIELD 6 CONTAINS AN *E* TO INDICATE THAT AN EXPONENT OVERFLOW
HAS OCCURREDe

PRINT LINE EXCEEDED:

IF, WHILE STORING CHARACTERS INTO THE PRINT LINE.
AN ATTEMPT IS MADE TO STORE A CHARACTER OUTSIDE
THE LINEs THE PROGRAM IS HALTED AND THE FOLLOWING 1S
PRINTED:

¢ON THIS LINE IS PRINTED THE CONTENTS OF THE PRINT LINE>
PRINT LINE EXCEEDED

THE FIRST LINE PRINTED IS THE CONTENTS (FIRST 120
COLUMNS) OF THE PRINT LINE AT THE TIME THE ERROR OCCURS.
FOLLOWING IS THE MESSAGE *PRINT LINE EXCEEDED®.

APPENDIX A

PAGE CONTENT

THeA. 1 G—-20 ALPHABET

THe A2 G-20 °*THAT* OPCODES

THeAW3 COMMANDS IN NUMERICAL ORDER
THe A5 COMMANDS IN ALPHABETICAL ORDER
THeAe7 SUDDS 1IN *THAT®

THeA.8 G—-20 SHIFT MULTIPLIERS

THe A9 BRIEF DECIMAL-OCTAL CONVERSION TABLE

SYMBOL
SPACE

d ¥+ —NLSXET<C-WIOCDTVOZEZIMXC—~IQMMmMONDD>P

INTERNAL

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

G—-20 ALPHABDBET

CARD CODE

NO

L 4+ + 4+ 4+ 4+ + +

WU N OVENOOUPLPFWUNOENTODPWUN=, O ODONOU RPWN -

+
(e Is e

[=]

cnNOOOCOOOOO

PUNCH

+ ¢85 O CNOUPLPUWUN=O

N %

NOTE
NOTE
NOTE
NOTE

e e
® 40 P & T Ve v A D R L

SyYyMBOL INTERNAL

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

THE INTERNAL REPRESENTATIDONS ABOVE ARE OCTAL INTEGERS.

NOTE 13
NOTE 23

MUST BE PUNCHED USING THE MULTIPLE PUNCH BUTTON

THE KEY MARKED QUOTE ON THE KEYPUNCH ACTUALLY PUNCHES

THE SEMI-COLON — THE 4-8 COMBINATION.
CHARACTER QUOTE MUST BE MULTI-PUNCHED AS 5-8.

THE G-20

THeAW 1

++0V0VOE~NOUPWUN=O

I 1+ | +wo |l
PO WUONNT =&

No+~N+00CO0F
[« I VI \ VI« o i o R

wo~N

[<o <o o 0 I o]

o ®o®

@© @

CARD CODE

NOTE

NOTE
NOTE
NOTE
NOTE

NOTE
NOTE

NOTE
NOTE

NOTE
NOTE
NOTE
NOTE

— — b b etk

P ope =

THe A2

G—-20 'THAT®' OPCODES
ADDRESS PREPARATION STORE
OCA 000 X » (DA) STL 173 (ACC) *» X
DCS 020 -X * (UA) STD 153 (ACC) * Xs X + 1
OAD 040 (ACC) + X » (DA) STS 113 (ACC) + X
OSU 060 (ACC) - X * (0A) STI 133 (ACC) » X
OSN 120 -(ACC) + X + (DA) STZ 073 0 » X
OAN 100 —-(ACC) - X » (DA)
OAA 140 |(ACC) + X| » (0A) INDEX REGISTER CODES
0OSA 160 |(ACC) - X| » (0A) LXP 012 X + I
LXM 032 -X =+ 1
ADD AND SUBTRACT ADX 002 (I) + X »
CLA 005 X + (ACC) SUX 022 (I) = X » 1
CLS 025 — X * (ACC) XPT 016 X » 1 (#0)
ADD 045 (ACC) + X » (ACC) XMT 036 - X » 1 (20)
suB 065 (ACC) - X * (ACC) AXT 006 (I) + X + 1 (£0)
ADN 105 - (ACC) - X =+ (ACC) SXT 026 (I) - X » 1 (20)
SUN 125 =(ACC) + X » (ACC)
ADA 145 |(ACC) + X| » (ACC) TRANSFER OF CONTROL
SUA 165 | (ACC) - X| =+ (ACC) TRA 017 X * NC
SKP 137 (NC) + X »+ NC
ARITHMETIC TESTS TRM 177 (NC) » X3 X + 1 * NC
FOM 021 X < 0 REP 013 REPEAT
FOP 001 X > O XEQ 010 EXECUTE X
FLO 121 (ACC) ¢ O
FGO 061 (ACC) > O
FUDO 161 (ACC) #X
- FSM 101 (ACC) + + X < O
FSN 141]J(ACC) + X] > 0
_FSP 041 (ACC) + X > O
MULTIPLY AND DIVIDE = =—ccecemm e e e e m e m
MPY 077 (ACC) * X » (ACC) MODE INTERPRETATION
SUL 075 (ACC) - X » (ACC)
DIV 053 (ACC) 7/ X * (ACC) 0 X + (1) + (0A)
RDV 057 X / (ACC) #* (AcCC) 1 (X) + (1) + (0A)
2 (X + (I) + (0A))
LOGIC OPERATIDNS 3 ((X) + (1) + (DA))
CAL 015 X » (ACC) ,
CCL 035 =X + (ACC) FOR ALL TESTSs DD NEXT IF
ADL 055 (ACC) + X » (ACC) CONDITION INDICATED IS TRUE.
EXL 115 (ACC) ~ X » (ACC)
ECL 135 (ACC) ~ aX » (ACC)
UNL 155 (ACC) v X =+ (ACC)
UCL 175 (ACC) v =X =+ (ACC)

LOGIC TESTS

I0Z 011 X = 0O * THAT* ASSEMBLES ALL COMMANDS
ICZ 031 ~X = 0 IN MODE 2 EXCEPT:

ISN 051 (ACC) + X # O STI TRA

IO 071 (ACC) = X =0 STS TRM

IEZ 111 (ACC) ~# X = 0 STD REP

IEC 131 (ACC) ~ ~X = 0 STL

IVZ 151 (ACC) v X = 0 STZ

IuC 171 (ACC) v =X = 0

—— — ———— — —— — —— — — — — — — — — i — i —

THeAa3
COMMANDS IN NUMERICAL DRDER

000 OCA OPERAND CLEAR ADD X + (DA)

001 FOP IF OPERAND PLUS X >0

002 ADX ADD TO INDEX (I) + X » 1

005 CLA CLEAR ADD X » (ACC)

006 AXT ADD TO INDEX AND TEST (I) + X » 1 (#0)
010 XEQ EXECUTE OPERAND X* (NC)sX+1+(NC)

011 I0Z IF OPERAND ZERD X =0

012 LXP LOAD INDEX PLUS X + 1

013 REP REPEAT REPEAT

015 CAL CLEAR ADD LOGIC X + (ACC)

016 XPT LDAD INDEX PLUS AND TEST X +» 1 (#£0)
017 TRA TRANSFER X + (NC)

020 OCS OPERAND CLEAR SUBTRACT - X * (0A)

021 FOM IF OPERAND MINUS X < 0

022 SUX SUBTRACT FROM INDEX (1) - X » 1

025 CLS CLEAR SUBTRACT - X » (ACC)

026 SXT SUBTRACT FROM INDEX AND TEST (1) - x » 1 (#0)
031 ICZ IF COMPLEMENT ZERO =X = 0

032 LXM LOAD INDEX MINUS - X =+ 1

035 CCL CLEAR ADD COMPLEMENT LODOGIC =X *+ (ACC)

036 XMT LOAD INDEX MINUS AND TEST - X » 1 (#0)
040 ODAD OPERAND ADD (AacCc) + X » (0DA)

041 FSP IF SUM PLUS (ACC) + X > O

045 ADD ADD (ACC) + X » (ACC)
051 ISN IF SUM NON-ZERD (ACC) + X # 0

053 DIV DIVIDE (ACC) 7 X *» (ACC)
‘055 ADL ADD LOGIC (ACC) + X *» (ACC)
057 RDV REVERSE DIVIDE X /7 (ACC) » (ACC)
060 0OSU OPERAND SUBTRACT (ACC) - X » (DA)

061 FGO IF GREATER THAN OPERAND (ACC) > X

065 SUB SUBTRACT (ACC) - X * (ACC)
071 I1UO IF UNEQUAL ODOPERAND (ACC) # X

073 STZ STORE ZERO 0 +» X

075 SUL SUBTRACT LOGIC (ACC) - X » (ACC)
077 MPY MULTIPLY (ACC) *® X »+ (ACC)

100
101
105
111
113
115
120
121
125
131
133
135
137
140
141
145
151
153
155
160
161
165
171
173
175
177

OAN
FSM
ADN
IEZ
STS
EXL
OSN
FLO
SUN
IEC
ST1
ECL
SKP
OAA
FSN
ADA
vz
STD
UNL
OSA
FUO
SUA
1ucC
STL
ucL
TRM

OPERAND ADD AND NEGATE

IF SUM MUNUS

ADD AND NEGATE

IF EXTRACT ZERO

STORE SINGLE

EXTRACT LOGIC

OPERAND SUBTRACT AND NEGATE
IF LESS THAN DPERAND
SUBTRACT AND NEGATE

IF EXTRACT COMPLEMENT ZERO
STORE INTEGER

EXTRACT COMPLEMENT LOGIC
SKIP

OPERAND ADD AND ABSOLUTE
IF SUM NON-ZERO

ADD AND ABSOLUTE

IF UNION ZERO

STORE DOUBLE

UNITE LOGIC

OPERAND SUBTRACT AND ABSOLUTE

IF UNEQUAL OPERAND
SUBTRACT AND ABSOLUTE

IF UNION COMPLEMENT ZERO
STORE LOGIC

UNITE COMPLEMENT LOGIC
TRANSFER AND MARK

THeAos 4

- (ACC) - X * (DA)
(ACC) + X ¢ O

- (ACC) - X + (ACC)
(ACC) ~# X = 0

(ACC) *» X

(ACC) ~» X +» (ACC)

- (ACC) + X =+ (DA)
(ACC) ¢ X

- (ACC) + X »+ (ACC)
(ACC) A~ X =0

(ACC) » X

(ACC) A aX +» (ACC)
(NC) + X » NC
|tACC) + X| » (DA)
(ACC) + X # O

| tacc) + x| » (ACC)
(ACC) v X = 0

(ACC) + Xs X + 1
(ACC) v X *» (ACC)

| tacc) - X| + (DA)
(ACC) # X

] tAcc) = x| +» (ACC)
(ACC) v X = 0

(ACC) » X

(ACC) v X * (ACC)
(NC) » X; X +# 1 *+ NC

145
045
055
105
002
006
015
005
035
025
053
135
115
061
121
o0z1
001
101
141
041
161
031
131
111
011
051
171
071
151
032
o012
077
140
040
100

ADA
ADD
ADL
ADN
ADX
AXT
CAL
CLA
o o
cLS
DIV
ECL
EXL
FGO
FLO
FOM
FOP
FSM
FSN
FsSP
FUO
1CZ
1EC
1EZ
102
ISN
1uUC
1UO
1Uz
LXM
LXP
MPY
DAA
OAD
OAN

COMMANDS IN ALPHABETICAL ORDER

ADD AND ABSOLVUTE

ADD

ADD LOGIC

ADD AND NEGATE

ADD TO INDEX

ADD TOD INDEX AND TEST
CLEAR ADD LOGIC

CLEAR ADD

CLEAR ADD COMPLEMENT LOGIC
CLEAR SUBTRACT

DIVIDE

EXTRACT COMPLEMENT LOGIC
EXTRACT LOGIC

IF GREATER THAN OPERAND
IF LESS THAN OPERAND

IF OPERAND MINUS

IF OPERAND PLUS

IF SUM MUNUS

IF SUM NON-ZERO

IF SUM PLUS

IF UNEQUAL OPERAND

IF COMPLEMENT ZERO

IF EXTRACT COMPLEMENT ZERO
IF EXTRACT ZERO

IF OPERAND ZERO

IF SUM NON-ZERO

IF UNION COMPLEMENT ZERO
IF UNEQUAL OPERAND

IF UNION ZERO

LDAD INDEX MINUS

LOAD INDEX PLUS

MULTIPLY

OPERAND ADD AND ABSOLUTE
OPERAND ADD

OPERAND ADD AND NEGATE

| cACC) + X|
(ACC) + X »
(ACC) + X »
- (ACC) - X
(I) + X » 1
(1) + X + I
X + (ACC)

X * (ACC)
X + (ACC)
- X + (ACC)
(ACC) /7 X =+
(ACC) A =X »
{(ACC) ~ X »
(ACC) > X
(ACC) ¢ X

X ¢ 0

X > 0

({ACC) + X «(
(ACC) + X #
(ACC) + X >
(ACC) # X
=X =0
(ACC) A X =
{ACC) » X =
X =0

(ACC) + X #
(ACC) v X =
(ACC) # X
(ACC) v X =
- X + 1

X + 1

(ACC) ® X »
| tACC) + x|
(ACC) + X +

- (ACC) - X =+

THeA«S

+ (ACC)
(ACC)
(ACC)
+ (ACC)

(#0)

(ACC)
(ACC)
(ACC)

(ACC)
+ (0DA)
(0A)

(0A)

000
020
160
120
060
057
013
137
153
133
173
113
073
165
165
075
125
022
026
017
177
175
155
010
O16
036

OCA
0ocs
0OSA
OSN
0osu
RDV
REP
SKP
STD
STI
STL
STS
STZ
SUA
sSuB
SUL
SUN
SUX
SXT
TRA
TRM
ucL
UNL
XEQ
XPT
XMT

OPERAND
OPERAND
OPERAND
OPERAND
OPERAND
REVERSE
REPEAT
SKIP

STORE
STORE IN
STORE
STORE
STORE
SUBTRACT
SUBTRACT
SUBTRACT
SUBTRACT
SUBTRACT
SUBTRACT
TRANSFER
TRANSFER

CLEAR ADD

CLEAR SUBTRACT
SUBTRACT AND ABSOLUTE
SUBTRACT AND NEGATE
SUBTRACT

DIVIDE

DOUBLE

TEGER

LOGIC
SINGLE
ZERD

AND ABSOLUTE

LOGIC

AND NEGATE

FROM TINDEX

FROM INDEX AND TEST

AND MARK

UNITE COMPLEMENT LOGIC
UNITE LOGIC

EXECUTE OPERAND

LOAD INDEX PLUS AND TEST
LOAD INDEX MINUS AND TEST

THa A6

X + (DA)

- X *+ (DA)

] (ACC) = X| » (DA)
- (ACC) + X + (0A)
(ACC) - X » (0A)

X / (ACC) » (ACC)
REPEAT

(NC) + X +» NC

(ACC) » X+ X + 1
{ACC) » X

(ACC) » X

(ACC) » X

0 +» X

| tacc) = X| #» (ACC)
(ACC) - X *» (ACC)
(ACC) - X + (ACC)

- (ACC) + X + (ACC)
(1) = X » 1

(I) - X » 1 (#£0)
X *» (NC)

(NC) » X3 X + 1 » NC
(ACC) v =X » (ACC)
(ACC) v X + (ACC)

EXECUTE X AS COMMAND
X % I (#0)
- X »+ 1 (#0)

ADC
ALF
CHK
COM
cPYy
DBG
DEC
DEF
DMP
ENT
FLG
FPC
HPC
LBL
LIN
LwD
MTT
NAM
ocT
oPM
ouT
PAG
PBC
PRT
RBC
REL
RET
RGN
SxXX
TOP
WRD

SUDOS IN *THAT®*

ADDRESS CONSTANT
ALPHANUMERIC INFORMATION
CHECK

COMMENT

corPy

DEBUG

DECIMAL LISTING

DEF INE

pumpP

ENTRY

FLAG

FULL PRECISION CONSTANT
HALF PRECISION CONSTANT
LABEL

LINE

LOGIC WORD

MARK TRANSFER TO

NAME

ODCTAL LISTING
OPERATOR MESSAGE

ouT

PAGE

PUNCH BINARY CARDS
PRINT

READ BINARY CARDS
RELEASE

RETURN

PRINT REGIONAL SYMDOL
SET STORAGE EXTRACTOR
TYPE OR PRINT

wWORD

THeAe7

G-20 SHIFT MULTIPLIERS

LEFT SHIFT NUMBER RIGHT

1 0 000 00

2 1 101 00

4 2 101 00

10 3 101 00

20 4 102 00

40 5 102 00

100 6 102 00

200 7 103 00

400 8 103 00

1000 9 103 00

2000 10 104 00

4000 11 104 00

10000 12 104 00

20000 13 105 00

40000 14 105 00

05 00 00001 15 105 00
05 00 00002 16 106 00
05 00 00004 17 106 00
06 00 00001 18 106 00
06 00 00002 19 107 00
06 00 00004 20 107 00
07 00 00001 21 107 00
07 00 00002 22 110 00
07 00 00004 23 110 00
10 00 00001 24 110 00
10 00 00002 25 111 00
10 00 00004 26 111 00
11 00 00001 27 111 00
11 00 00002 28 112 00
11 00 00004 29 112 00
12 00 00001 30 112 00

12 00 00002 31 113 00

SHIFT

00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004

THeA .8

DECIMAL

TN PLPUN-

10
20
30
40
50
60
70
80
90

100
200
300
400
500
600
700
800
900

000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000

BRIEF DECIMAL-OCTAL CONVERSION TABLE

OCTAL

P e e et

23

47

72
116
141
165
210
234
257
303

12
24
36
50
62
74
106
120
132

144
310
454
620
764
130
274
440
604

750
720
670
640
610
560
530
500
450

420
040
460
100
520
140
560
200
620
240

OCTAL

100
200
300
400
500
600
700
1 000

10
20
30
40
50
60
70

100
200
300
400
500
600
700

000
ooo0
000
000
000
000
000

000
000
000
000
000
000
000

000
000
000
000
000
000
000
000

DECIMAL

32
65
98
131
163
196
229
262

8
16
24
32
40
48
56

64
128
192
256
320
384
448

512
024
536
048
560
072
584

096
192
288
384
480
576
672

768
536
304
072
840
608
376
134

THaAL9

