G-20 Central Processor

e Service Manual
‘ VOLUME 1

;%59,{{{‘33&;iuiqeaa;itﬁ:il‘—:ﬂi(di&m\-m-mvj-v-dn‘i-«&xfun.... “

AR

i
K3
:
&

~—

CENTRAL PROCESSOR SERVICE MANUAL

TABLE OF CONTENTS

VOLUME 1

CHAPTER 1 -~ INTRODUCTION
CHAPTER 2 — INFORMATION FORMAT
SECTION 2.1 — MACHINE LANGUAGE WORDS

2.1-1
2.1-2

Command Word Forl_'nat
Data Word Format

SECTION 2.2 -~ OPCODE LIST
SECTION 2.3 — OPERAND ASSEMBLY

CHAPTER 3 — INTRODUCTION TO MACHINE
ORGANIZATION

SECTION 3.1 - GENERAL

SECTION 3.2 — MACHINE DIAGRAM

3.2-1

Machine Diagram Legend

CHAPTER 4 — CONTROL REGISTERS
SECTION 4.1 — ORIENTATION

4.1-1
4.1-2

SECTION 4.2 — COMMAND DECODING REGISTERS — CD

4. 2~1

4.2-2

4.2-3

4.2-4

Memory Control Registers
Control Information Storage Registers

Index Section of CD Register,
Normal Command Decoding
Opcode Section of CD Register,
Normal Command Decoding

Mode Section‘of CD Register,
Normal Command Decoding

Use of CD Register in Block
Input/Output, Repeat and Bootstrap
Operations

-1Q
e

4—6
4-11

412

TABLE OF CONTENTS

PAGE
SECTION 4.3 — ADDRESS REGISTERS 4-18
4.3—1 The Memory Address Register, MA 4--18
4.3—2 The Command Address (Or Next 4-19
Command) Register, CA
4.3-3 The Buffer Address Register, BA 421
4.3—4 The Address Counter Register, AC 4-25
4.3-5 The Address Memory Register, AM 427
SECTION 4.4 — BUS REGISTERS 4-28
4.4-1 The Command Address Register, CA 4-30
4, 4-—-2 Control and Enable Register, U 4-31
4.4-3 Line Response Register, H 4-34
4.4—4 The Interrupt Request Register, J 4-36
4.4—-5 The Pickapoint Register, PE 4-36
CHAPTER 5 — ARITHMETIC UNIT 5—-1
SECTION 5.1 — MEMORY BUFFER REGISTER — B (MB) 5—-1
‘ SECTION 5.2 ~ THE ARITHMETIC REGISTERS 5—17
5.2—=1 The N, D, S, M and A Registers 517
i 5.2—2 The Composite Registers: OA and 5—-10
3 : ' The Accumulator
] 5.2—3 The Sign Flip—Flops 5-11
P SECTION 5.3 — THE ADDER 5-13
' 5.3-1 General Description 5-13
5.3—2 Adder Operation 5-17
5.3=3 Leapfrog Concepts 5--22
5.3—4 Logic Function of Adder, R 5-30
SECTION 5.4 — EXPONENT CIRCUITRY 5-34
5.4-1 The Exponent Registers 5-34
5.4~2 The Modulo Three Counter 5-37
5.4-3 The Subtractor—Comparator 5-38
CHAPTER 6 — THE CORE MEMORY SYSTEM 6—1
SECTION 6.1 —GENERAL DESCRIPTION 6—1
6.1—-1 Introduction to Central Processor 6—1
Core Memory
6.1-2 Coincident—Current Core Memory 6—5
Theory

ii

N

s

S

SECTION
SECTION

SECTION

SECTION
SECTION

6
6
6
6
6
6
6
6
6
6
6
6
6
6

TABLE OF CONTENTS

.2 — ADDRESS DECODING
.3 — MEMORY CIRCUITS

. 3—1
.32
.33

Memory Drivers
Memory Strobe Generator
Sense Amplifier

-4 — MEMORY OPERATION

. 4—1
. 42
.43

Memory Cycle Timing
Memory Cycles
Electronics of a Read—Write Operation

.5 —MEMORY PARITY

.6 — EXTERNAL MEMORY MODULES (MM-10)

. 6-1
. 6—2
. 63

General
MM-10 Logic
MM=-10 Special Circuits: MM~10 Clock

CHAPTER 7 — ELECTRONICS
SECTION 7.1 - LLOGIC CIRCUITS -

SECTION

SECTION

-J

SCEPS PN IR BES EEN BEN BTN BN BN BN T B BRSNS IS N

.2-1
. 2=2

.3-1
.32
. 3-3
. 3—4
.35
.3—6
. 37
.38

Introduction

Diode Gates
Inverters
Flip—Flops
Emitter Followers
Current Driver

.2 — COMMUNICATION SYSTEM CIRCUITS

Line Drivers
Line Receivers

.3 —CLOCK GENERATOR CIRCUITS

Introduction

Frequency Source Generator

Dual Purpose Flip—Flop

Clock Pulse Generator

Pulse Amplifier

Clock Mode Switch

Clock Start—Stop Logic

Summary of the Central Processor
Clock Generator Pulse Requirements

iii

PAGE
6—9
6~15

6—15
6—18
6—21

6—29

6—29
6—31
6—33

6—39
6—43

6—43
6—46
6-54

73

-3
7—4
7-9
7-16
7—18
7—20

7—21

7—21
7—23

7—25

725
7-30
732
7—35
7-38
7-39
7—40
7—45

piosa

S TORNr N ¢ N A

IR T

a2 R RR S Sl e

[

SECTION

SECTION

SECTION

SECTION

TABLE OF CONTENTS

7.4 — CENTRAL PROCESSOR POWER SUPPLY

7.4—-1 General
7.4-2 Voltage Regulators

7.5 — CENTRAL PROCESSOR TURN—ON/TURN—
OFF CIRCUITS

7.5-1 Central Processor Turn—on Cycle

7.5—2 Central Processor Turn—off Cycle

7.6 —SPECIAL CIRCUITS

7.6-1 Power Fault Detector

7.6—2 High and Low Temperature Thermostats

7.6-3 The Tone Generator

7.6—4 Real Time Reference Generator

7.7 — THE CONTROL PANEL

7.7-1 Control Panel Switches

7. 72 Control Panel Indicator Lights

7. 73 Marginal Checking Controls

7.7—4 Clock Generator Controls

7.7-5 Elapsed Time Indicator

CHAPTER 8 — MAINTENANCE

SECTION

SECTION

SECTION

SECTION

8.1 —INTRODUCTION

8.1-1 Purpose
.1-2 Field Service Tool List

8

8.2 — INSTALLATION PROCEDURE
8.2—-1 Shipping

8.2—2 Inspection

8.2-3 Installation Requirements

8
8

.2—4 Operation Checkout

.3 — ACCESS PROBLEMS AND HIGH
TEMPERATURE CONDITIONS

8.3~-1 Access Problems

8.3—2 High Temperature Conditions
8.4 — PACKAGES

8. 4-1 General Information

8. 4-2 Tools

iv

PAGE
7—47

7—47
7—51

=57

=57
7—-61

7—-63

7—63
7—64
7—65
7—-67
7—69

7—69

=72

-74
7—74
=75

8-10
8-16

8-16
8—17

8-20

8-20
820

PO X MR

LA Ay,

R

S G A

!

3

7

ESAR L

=T

oz
SRS

TREISRIS

TSR

TR

T e o e R X e

S el "’W\;- -

Ey
i

A ORISR I P Bt SRk

SECTION

0 0 0w 0 W

.43
.4—-4

TABLE OF CONTENTS

Techniques
Preventive Maintenance

.5 — WIRE-WRAP

.5=1
.52
.53
.5—4

General Information
Tools

Techniques
Wire—Wrap Check List

PAGE
8—23
8-26
8-27
827
8-29
8-31
8-36

ey L s

Mgy

1.0

CHAPTER 1

INTRODUCTION

The intention of this manual is to provide the information necessary to an
understanding of the electronic and logical design of the G—20 Central
Processor. In these discussions, acquaintance with the following has

been assumed:

1) the basic principles of electronics,
2) Boolean algebra,

3) the use of binary—coded octal notation.

Multitudinous published texts are devoted to the exposition of these
ideas. The unique aspects of the design of a central processor as
complex as the G—20 provide sufficient scope for a single manual; the

inclusion of more general information would obscure the issue.

Similarly, familiarity with the G—20 computing system and the under—
lying system concepts has been assumed. The General Reference
Manual is devoted to a thorough analysis of the system and its com—
ponents; inclusion of this material in the current manual would involve
unnecessary duplication. Actions taken by the Central Processor
logic that involve communication with other units in the system can be
understood only in terms of the system as a whole. In fact, a certain
amount of confusion is bound to result from analyzing the detailed
workings of the Central Processor without knowledge of the system
requirements that dictated the implementation. This is particularly

true of the coOmmunication and interrupt systems since these are the

1-1

most unique elements of the system design. It should be emphasized
that a discussion of these systems has a proper place in this manual
and that the material has been omitted only because it is so well

presented in the Reference Manual. Discussions in this manual pre—

suppose acquaintance with this information.

The manual has been published in two volumes with Volume 2 being
devoted entirely to the logic. Volume 1 begins with a discussion of the
overall design of the computer, proceeding to a detailed analysis of the
electronic design and, finally, to particular information dealing with
the maintenance of the Central Processor. Material contained in
Chapter 2 (Information Format) constitutes an exception to the rule of
not repeating information from the Reference Manual. This chapter
includes a discussion of the various G—20 word formats, a list of the
G—20 commands (operation code list), and a brief description of the
operand assembly process. The latter is included here to provide
orientation into the manner of program execution. (Sections 9.1 — 9.3
cover the same material from the point of view of the logical imple—
mentation.) Most of this information appears in the General Reference
Manual. Its inclusion here can be justified on the grounds that it is
referred to frequently and should, therefore, be readily available for
reference. Further, its basic nature is such that all logical manipu—
lations discussed in the manual result from some aspect of the format
and, thus, a solid grasp of these ideas is essential. Chapter 3 (Intro—
duction to Machine Organization) is devoted to a general description of
the machine layout with particular emphasis being placed on the
machine diagram. Chapter 4 describes the Central Processor control
registers: their uses, the existing transfer paths, means available
for shifting information, and the general relationships between these
registers and the logic. The importance of the CD register (Command
Decoding) is stressed since the decoding that takes place here controls

all subsequent activities. Chapter 5 introduces the Arithmetic Unit:

12

N

-

3
{
%
i

e

SRt a S AT

A SRR LN 2 T T

T

s

R SR

the registers and their inter—relationships, adder circuitry and opera—
tion, exponent circuitry, etc. Chapter 6 covers the operation of the
memory system: the circuits, handling of address decoding and memory
parity, timing considerations, connections of the system to external
memory, and the operation of the system using external memory units.
The basic Central Processor electronic design is discussed in Chapter 7.
This includes descriptions of logic circuits, communication circuits,

and so on. Chapter 8 is devoted to a generalized discussion of mainte—
nance of the Central Processor: the tools required and the procedures

to be £;)110wed.

The analysis of the logic in Volume 2 begins with a description of
Master Control, the section of the logic that determines the handling of
each command word, in Chapter 9. Chapter 10 introduces several
short, miscellaneous operations, Chapter 11, the logic involved in
memory operations, 12, input/output, and 13, the use of the adder
circuitry. This breakdown is discussed in detail in Sections 9. 1 and

10.1.

Basic documentation for the G—20 Central Processor consists of the
drawings, schematics, wire list, and logic flow charts. All of the
{low charts appear in Volume 2. Relevant sections of the drawings are
included in Volume 1. The wire list and schematics, which relate the
logic to the circuits that implement it, are available to those who

require usce of them.

Certain conventions in terminology have been used throughout this
manual: one is discussed here, the others are pointed out as they
arisc. In cach instance an attempt has been made to choose the most
generally applicable term. Even so, no set of terms could be expected

to satisly cvery case; exceptions are bound to occur.

1.0

As an example of the choice of terminology, consider the problem of
register bit designations. G—20 floating—point arithmetic is carried
out to an accuracy of 42 bits so that all registers involved in such
operations must be 42 flip—flops long. However, some registers have

extra flip—flops at one or both ends (see Figure 3.2—2) that provide a

means for retaining significance when certain overflow conditions occur.

(The value is brought into normal range by means of shifts in conjunc—
tion with exponent increments or decrements.) These extra bits are
also useful in the performance of shifts between registers. The
existence of extra positions means that the least significant flip—flop in
some registers holds the 0 order bit (Bit X 20) while in others it holds
the —1 (Bit X 2_1), —3 (Bit X 273), or the —4 (Bit X 2_4) order bit.
Thus, reference to a particular bit on the basis of the number of the
flip—flop storing it would not indicate the order of the bit. For this
reason the convention adopted is tied to the order of the information,
not to the number of the flip—flop. Each bit is named for the pOWer-Of
2 with which it is associated. For example, in register S which has a
single extra flip—flop at the lower end, the 0 order bit is stored in the
second flip—flop but is referred to as Bit 0. For the M register, which
has three extra flip—flops at the lower end, the 0 order bit will still be
called Bit 0, while the first flip—flop in M contains Bit =3, the second,
Bit —2, etc., and the fifth, Bit 1, the sixth, Bit 2, etc. This avoids

the confusion that would result from use of flip—flop designations.

1—-4

¥ | 2.1-1

CHAPTER 2

} INFORMATION FORMAT

SECTION 2.1 — MACHINE LANGUAGE WORDS

1 In a computing device as versatile as the G—20 Central Processor,' it is

i necessary to deal with various types of information. Yet, the memory

modules are of standard design with 32 bits reserved for the storage of

a Central Processor word. (A memory word consists of 33 bits, but

the thirty—third bit is reserved for parity.) It therefore becomes nec—

essary to establish a system that allows the programmer to know

exactly what information each 32-bit Central Processor word contains,

and at the same time allows the Central Processor to know how to pro—

cess it. Figure 2.1-1 lists all possible variations of word format that

the Central Processor can use. These words are all in machine

R A S,

language (binary number system of 1's and 0's) that the Central

&; Processor can either decode or use directly in information manipulations.
These machine language words present the eventual form of all com—

| } mands and data used by the Central Processor no matter how sophisti— -?

\ cated the original program language may be.

2.1-1 COMMAND WORD FORMAT All instructions of a program

N

| - processed by the Central Processor will appear in the command word
format shown in Figure 2.1-1. An examination of this figure reveals
that the command word is broken down into several distinct sections.

The 15 least significant bits (bits O to 14) are referred to as the Base

\s.‘ﬂ-’

£ S S i S T

e R R T LT R Y

2.1-1

Address, A. This part of the command may be used as an operand or
an address of an operand depending upon the mode of operation. (Oper—
ating modes are discussed in Section 2.3.) The range of numbers in
this region is from 0 to 32, 767- Thus, it can be seen that if the A
field is being used as an address of an operand, any location in memory

can be selected.

The next 6—bit section of the command word (bits 15 to 20) is the index,
I, field and designates index addresses. This I field makes it possible
to reference an index location and some other memory location while |
using a single command word, thus saving time and memory space.

Since 6 bits have been assigned to this section, the I field can address ‘
only the first 64 locations in memory. An I field equal to zero is a |
special case that means no index address is specified and consequently,
only 63 index addresses are available. We will digress momentarily
from the command word and discuss these index addresses since an

early, basic understanding of them and their uses is quite important.

Programmers often have need for counters within their programs.
These counters, or tallies, are incremented or decremented each time
a predetermined event occurs during the processing of a program. The
number remaining in the tally at the end of the processing of the pro—
gram may be included as part of the result. Also, there are many

cases where it is not only desirable to maintain a tally on a particular

operation, but also to know when a predetermined number of repetitions
has occurred. Thus, a tally and a test are needed. Any location in
memory could be used as a tally, but it would take three commands to
do a tally or a tally and test operation. A group of commands designed
to provide modifications of the index locations in memory, however,
can accomplish a tally or a tally and test operation by the use of only

one of these special commands. The numerical value of this changing

tally stored in one of the index locations can also be used to modify the

2—2 _ : !

I ! 2.1-1

operand X of a command word. This use of the index locations is dis—

cussed in Section 2. 3.

The 7 bits of the opcode section of the command word (bits 21 to 27)

contain one of the opcodes (o0peration codes) listed in Table 2.2-1. The

‘, configuration of these 7 bits will later be decoded by the Central

| Processor to determine necessary steps and internal paths used in the
processing of the opcode. It will be noted that Table 2. 2—1 lists all of

| the opcodes as 3—digit octals (9 bits), whereas only 7 bits are available

! for the opcode in the command word. This is acceptable, however,

T AT N A e s T e m T -

g; ! since the most significant octal digit of an opcode is never greater than
1 octally (001 in binary). Thus, it is seen that indeed only 7 bits are
needed to represent any opcode octal representation. The two most
significant bits of the most significant octal of the opcode are used by

the command word (bits 28 and 29) to indicate the mode of operation.

There are four operating modes available (discussed in Section 2. 3).

The opcode octal representation as commonly listed will appear quite

different from the corresponding octal in the command word. This

TatmS TR T LR N FRAP R

| relationship is shown in Table 2. 1-1.

TABLE 2.1-1 Command Word Octal Corresponding to Most
) a Significant Digit of Opcode List Presentation

Most Significant Octal Digit in Opcode List

~——’

; ; . Mode 0 1
; 0 0 1
; 1 2 3
)) . ;
| 3 6 7

TR

The remaining 2 bits of the command word are flag bits. These are

23

T e

TR AR R

IR ENEET

R R IR TSR

0
e
Y

H
v
3

5: eyt —
TSRS I R R TR

2.1=2

flag bits which provide programmable interrupts.

Double Precision Numbers. Double precision number words are made

up of two 32-bit Central Processor words. The mantissa of the first of
the two words contains the 21 least significant bits of the 42—bit operand
and the mantissa of the second word contains the 21 most significant
bits. Bits 21 through 31 are the same as in a single precision number
word with.the exception that bit 29, the length tag will be a 1, designat—
ing a double precision word. It should be noted that bits 21 through 31
of both words of the double precision number will be identical. Bits 31
through 21 of the second word, however, are not needed by the Central
Processor decoding and are ignored. When bit B29 is high and logic
opcodes are not being processed, all operations will be done in floating
point even if pickapoint operations are indicated by the pickapoint mode

flip—flop, UPE.

Floating Point Integer. F}oating point integer words are also very
similar to the single precision number word format, except that the
exponent (bits 21 to 26) is always set to zero and the sign of the expo—
nent is plus (bit 27 always set to zero). It should also be noted that the
contents of the mantissa of the floating point integer are quite different
in basic concept from the contents of the mantissa of a single precision
number word. The mantissa of the single precision number word con—
tains the rounded 21 most significant bits of a variable exponent number,
while the mantissa of a floating point integer contains the truncated 21

s . 0
least significant bits of a zero exponent (8) number.

Pickapoint Single Precision Number. In the pickapoint single precision

word, the mantissa (bits 0 through 26) contains the binary representa—
tion of the operand. The exponent and the sign of the exponent,
normally positioned in bits 21 through 27, in the pickapoint mode of

operation are held in the PE register (a 7—bit register). Since the

2—5

wn TR TR A

¢
4
i,
\
£y
3
3
'.

PO M0

S8 PR

e

ma e i tpniae

orinse

ki

2.1=-2

contents of the PE register can only be changed by the programmer,
this allows computation referenced to some preassigned exponent value.
This facilitates the processing of fixed point computations. Bit 27 is 1
indicating a pickapoint single precision number as opposed to a picka—
point integer where bit 27 equals 0. Bit 28 holds the sign of the man—
tissa (0 = plus, 1 = minus), and the length tag (bit 29) is 0 indicating

a single rather than double precision word (pickapoint mode operations

can only occur in single precision). Bits 30 and 31 are the flag bits.

Pickapoint Integer. The pickapoint integer is very similar to the

pickapoint single precision number format. With pickapoint integer,
however, bit 27 of the word is set to zero to i'ndicate an integer word
and, therefor'e, the 7 bits of the PE register are s-éﬁitgfé%i%—fﬁm‘e—expg.
ment). Also, the basic concept of the mantissa of the pickapoint single
precision number and of the pickapoint integer is quite different. The
mantissa of the pickapoint single precision number contains the rounded
27 most significant bits of a word to some variable, predetermined
exponent, whereas the mantissa of a pickapoint integer contains the

e . 0
truncated 27 least significant bits of a zero exponent number (8).

Logic Word. The logic word is made up of two parts, the flags (bits 30
and 31) and 30 bits of information (bits 0 to 29) that have no exponent
associated with them. These words have no use in actual mathematical
computations; however, used with the logic commands they provide an
easy means of manipulating or changing command or data words within
the machine. The previously discussed use of logic words to provide

flags to command or data words once they are in memory is one illus—

tration of their uses.

2—6

STLRAL g

s L A

TSI

SR TEIIEG

&2

[V S,

Srmaan”

2.1-2

FIGURE 2.1-1 Central Processor Word Formats

FLAGS | MODE OPCODE INDEX BASE ADDRESS
31 30{29 28|27 21|20 15(14 0
STANDARD COMMAND WORD
MANTISSA SIGN
LENGTH TAG-—+ L FEXPONENT SIGN
FLAGS | o | £ | & EXPONENT MANTISSA
31 30| 29 | 28 | 27 |26 21|20 0
SINGLE PREC!SION NUMBER, FLOATING POINT
MANTISSA SIGN
LENGTH TAG—% F EXPONENT SIGN
FLAGS | "1 | -+ | % EXPONENT MANTISSA
31 30| 29 | 28 | 27 |26 21|20 [
DOUBLE PRECISION NUMBER, RIGHT HALF (X)
SAME AS ABOVE, SEE TEXT. MANTISSA
31 21|20 0
DOUBLE PRECISION NUMBER, LEFT HALF, (X+1)
INTEGER SIGN
LENGTH TAG—$ l rEXPONENT siGN-f't 0
FLAGS o | + 0 EXPONENT = 0 INTEGER
31 30| 29 | 28 | 27 |26 2120 0
INTEGER FLOATING POINT
MANTISSA SIGN
LENGTH TAG —% $ r INTEGER TAG
FLAGS o | +£1 1 MANTISSA
31 30! 29 | 28 | 27 |26 0
SINGLE PRECISION NUMBER, PICKAPOINT
INTEGER SIGN
LENGTH TAG—; ¢ r INTEGER TAG
FLAGS o x| o INTEGER
31 30 29 | 28 | 27 |26 0
INTEGER PICKAPOINT
FLAGS
31 30 |29 0
LOGIC WORD
2—1

| SECTION 2.2 — OPCODE LIST

: TABLE 2.2-1 Opcode List
OPCODE NOTATION USERS OCTAL ENGR. NAME OPERATION
J CROSS REFERENCE CODE CODE CODE
: Octal Alpha Engr. ADDRESS PREPARATION
l oca 000 NO Clear and Add X ~ (OA)
‘ 000 OCA NO ocs 020 N1 Clear and Subtract - X - (OA)
| 001 FOP TO OAD 040 N2 Add X + (Ace) ~ (OA)
‘ 002 ADX B2 osu 060 N3 Subtract - X + (Acc) - (0A)
; 005 CLA A0 OAN 100 N4 Add and Negate -1 X+ (Ace)] ~ (OA)
| 006 AXT B6 OSN 120 N5 Subtract and Negate —[=X + {Acc)] -~ (0A)
| ol 10z So OAA 140 N6 Add and Take Absolute Value | X+ (Acc)t ~ (0A)
i otz LXP BO OSA 160 N7 Subtract and Take Absolute Value i— X + {Acc)f ~ (0A)
! ’ o1 3} REP MO Al
[opcade] ADD AND SUBTRACT)
. (25 CAL Lo
: 016 XPT B4 cLa 005 A0 Clear and Add X —+ (Acc)
\ ot? TRA X0 CLS 025 Al Clear and Subtract L ~X - (Acc)
i 020 OCS N1 ADD 045 A2 Add X + (Acc) = (Acc)
i 021 FOM T1 SUB 065 A3 Subtract —X + {Acc) - (Acc)
| 022 SUX B3 ADN 105 Ad Add and Negate i —[X+ (Acc)] = (Acc)
| 025 cLS Al SUN 125 A5 Subtract and Negate R —[=X + (Acc)] = (Acc)
i 026 SXT B7 ADA 145 Ab Add and Take Absolute Value \) Y X+ (Acc)| —~ (Acc)
: 03] ICZ Sl SUA 165 A7 Subtract and Take Absolute Value j—X+ (Acc)\ -+ (Acc)
| 032 LXM Bl . v . N
i Fj]} } BTR M1 1'_'_1_\10_&'1, 'I:k_xle_“A‘ccg.mulg_tor is not_dist:rvbecvl i%{‘t}{es.e opgodesﬁ -
! 035 ~ CcCL L1 ADD AND SUBTRACT TESTS Criterion
| 036 XMT B5)
037 TRE X! FOP 001 TO If Operand Plus X>0
040 OAD N2 FOM 021 Tl If Operand Minus -X >0
041 FsSp T2 FGO 061 T3 If {(Acc) Greater Than Qperand —~X 4+ (Ace) > 0
045 ADD A2 FLO 121 TS If (Acc) Less Than Qperand —[=X+ (Acc)] > 0
051 ISN S2 FUO 161 T7 If (Acc) Unequal to Qperand =X+ (Acc)(> 0
! 052 ERO R2 FSP 041 T2 1If Sum Plus X + (Acec) > 0
! 053 DIV DO FSM 101 T4 1f Sum Minus —[X+(Acc)] > O
055 ADL L2 FSN 141 T6 If Sum Non-zero PX+ (Acc)] > 0
056 LDR RO
057 RDV D1 Note: If test is satisfied, go to next command of program (NC). If test is not
: 060 osu N3 satisfied, go to NC + 1.
t 061 FGO T3
i 065 SUB A3 LOGIC OPERATIONS
N 071 o 83
072 ERA R3 CAL 015 Lo Clear and Add Logic Word 31 X]0 - (Acc)
h 073 STZ P4 cCL 035 Ll Clear and Add Complement of Logic Word 31 X J0 -+ (Acc)
075 SUL 13 ADL 055 L2 Add Logic Word 31 X + (Acc)]0.—+ (Acc)
076 EXR Rl suL 075 L3 Subtract Logic Word 31[- X + {Acc)]e ~ (Acc)
4 077 MPY D2 EXL 115 L4 Extract With Logic Word 31[X A (Acc)l0 ~ (Acc)
100 OAN N4 ECL 135 L5 Extract With Complement of Logic Word 31 XA~ {Acc)]0 = {(Acc)
i 101 FSM T4 UNL 155 L6 Unite With Logic Word 31 XV {Acc}]0 - {Acc)
105 ADN A4 UCL 175 L7 Unite With Complement of Logic Word 31[X v(Ace)]o - (Acc)
111 IEZ S4
113 STS Pl Note: 0 - 41[(Az:':)]32 for all of these codes.
115 EXL L4
117 TDC X5 LOGIC TESTS Criterion
120 OSN N5
lzi FLO T5 102 o011 50 1f Operand Zero 310 X Jo = 0
125 SUN AS cz 031 Sl If Complement of Operand Zero 319 X jo=0
131 1IEC S5 . ISN 051 s2 I1f Sum Non—zero 3 X+ (Acc)fo > 0
133 STI P3 U0 071 53 If Unequal to Operand 31f=X + (Acc)io > 0
135 ECL LS 1EZ il sS4 1f Extraction Zero 31[XA (Acc)]o = 0
137 SKP X2 1EC 131 S5 If Extraction With Complement Zero 31[X ~(Acc)]o = ©
o gha X wz 151 s6 Jf Union Zero 31[XV {acc)fo = 0
i i v =
145 ADA Al ue 171 S7 _If Union With Complement Zero 31[X v(Acce}]o 0
151 wz S6 Note: If test is satisfied, go to next command of program (NC). If test is not
153 STD PO satisfied, go to NC + 1.
155 UNL L6
157 TLC X4 MULTIPLY AND DIVIDE
160 QOSA N7
: 161 FUO T7 MPY 077 D2 Multiply (Acc) ¥ X —~ (Acc)
165 SuA A7 DIV 053 DO Divide (Acc) / X —~ (Acc)
171 1uc S7 RDV 057 Dl Reverse Divide X / (Acc) = (Acc)
{ 173 STL P2
175 ucL L7
177 TRM X3
* 000 BTD6
* 020 BRDé6
* 040 BTCé
* 100 BTDS8 .
%120 BRDS !
* 140 BTCS8

2—8 C .

USERS OCTAL ENGR. NAME OPERATION OPCODE NOTATION

i .1 CCDE CODE CODE CROSS REFERENCE I
STQORE OPERATIONS . Alpha Qctal Engr.
STL 173 P2 Store Logic Word 31(Acc)0 - 31 (X)O0 ADA 145 Ab
STD 153 PO Store Double Precision 20(Acc)0 -~ 20(X)0

ADD 045 A2

41(Acc)2l —~ 20(X + 1)0 ADL 055 L2

STS 113 Pl Store Single Precigion ADN 105 A4
H {2] Floating Point Mode 41(Acc)2l - 20(X)0 ADX 002 B2
. [b] Pickapoint Mode 41(Acc)ls -~ 26 (X)0 AXT 006 Bb
4 STI 133 P3 Store Integer 033 Ml
. A [a] Floating Point Mode 20(Acc)0 -~ 20(X)0 BTR (%]
0 -~ 21 (X)26 CAL 015 LO
[b] Pickapoint Mode 26{Acc)0 -~ 26(X)0 cCcL 035 1
STZ 073 P4 Store Zero 0 —~ 31 (X)0 CLA 005 AQ
CLS 025 Al
INDEX OPERATIONS DIV 053 Do ;
ECL 135 L5
LXP 012 BO Load Index Plus X - {1} ERA 072 R3
LXM 032 Bl Load Index Minus —-X ~ (I} ERO 052 R2
b} ADX 002 B2 Add to Index X+ (1) ~ (1) EXL 115 L4
SUX 022 B3 Subtract from Index — X+ (1) = (1) ExR 076 RI !
! i FGO 061 T3
: INDEX TESTS FLO 121 TS !
: FOM 021 T1 ;
: ' XPT 016 B4 Load Index Plus and Test X -~ (1) FOP 001 TO
? i XMT 036 B5 Load Index Minus and Test -X - (1) FSM ot T4
| AXT 006 B6 Add to Index and Test X+ (1) = (I) FSN 14y Té
: ; SXT 026 B7 Subtract from Index and Test —X+ (1) - (I} FSP 041 T2
3 ! FUO 161 T7
’ . j(o¥ A 031 51
4 i Note: If final value of {1) is not zero, go to next command, NC, of IEC 131 s5
‘j : program. If final value of (1) is zero, go to NC + 1. EZ 1 I
! ; T 10z o1l SO
‘; i REGISTER OPERATIONS ISN 051 s2
. * ucC 171 s7
LDR 056 RO Load Register: g,EH, J 12 i g - :ieg. i; U0 071 53
- eg.
L".XR 076 R1 Extract Register I into [tself 14{(Reg. 1}~ X]0 - (Reg. I) uz 15! sé
ERO 052 R2 . A LDR 056 RO
- Extract Register I into QA 14[(Reg. I}~ X]J0 - (OA)
| ERA 072 R3 . . LXM 032 Bl
i Extract Register I into Acc 14[(Reg. 1) ~X]0 —~ {(Acc)
i

LXP 012 BO
i MPY 077 D2
: Note: Registers available for thfzse perations are CA, U, H, J, and PE. OAA 140 Né6
i . * The CA register can be & only & 'an_‘Ele or ERA opcode. OAD 040 N2
e B LG CRpi fritt g .z Aa = Lf o proce OAN 100 N4
OoCA 000 NO H

QCs 020 N1

TRANSFER OF CONTROL

i
i
! TRA 017 X0 Transfer [to Location X] . 14[X jo —~ (NC) OSA 160 N7
’ TRE 037 X1 Iransfer and Enable Interrupts 14[X Jo = (NC) OSN 120 NS
' SKP 137 X2 Skip [X Words] 14{X + (NC)]0 —~ (NC) csu 060 N3 4
l TRM 177 X3 Iransfer [to Location X + 1] and {NC) = (X)) 013 MO i
; ‘ Mark [in Location X] 14[X+1]0 ~ (NC) REP [opcode]
RDV 057 Dl
4 SINGLE CHARACTER OUTPUT SKP 137 X2
- STD ~ 153 PO
' ' TLC 157 X4 Transmit Line Command 7[X]Jo - 7(LD}o STI 133 P3
i ! 0 —~ (LD8) STL 173 P2
& | TDC 117 X5 JTransmit Data Character 7[X]o - 7{LD)0 STS 113 Pl :
i , 1 - (LD8) STZ 073 P4 ;
, ‘ SUA 165 A7 i
¢ H BLOCK INPUT /QUTPUT SUB 065 A3
; BTR 033 Ml Block Transmit or Receive X is address of first SUL 075 L3
!] - operand in the block SUN 125 A5
{ SUX 022 B3
| BTC6 Block Transmit Commands 6-bit characters SXT 026 B?
i BTCS8 Block Transmit Commands 8-bit characters TDC n7 X5
1 BTD6 Block Transmit Data b6-bit characters TLC 157 X4 ;
{ " BTD8 Block Transmit Data B8-bit characters TRA 017 X0 ‘
{) BRD6 Block Receive Data 6&-bit characters '"}-’i;:/i ?i; i;
i BRDS8 Block Receive Data 8-bit characters veL 175 L7
! REPEAT OPERATIONS UNL 155 L6
i XMT 036 B5
REP [001 Sccde] MO Repeat Next Command X = address of first XPT 016 B4]
H P operand of block. * BRDb6 020 i
. ! * BRD8 120 1
f‘ ; Note: All 32 opcodes of the Add/Subtract, Add/Subtract Test, Logic, and Logic Test com— * BTC6 040
:’ . . mands can be performed using the Repeat mode. Each Repeat operation is designated * BTC8 140
) i \ by two words, the first of which contains the opcode 013. The opcode of the second * BTD6 000
’: i J word can be any of the above mentioned commands. Commands that are to be repeated * BTD8 100 |
i 1 arc the same as their non—repeat counterpart except that an R (to represent Repeat }
5 1 mode) is affixed to the mnemonic of the command. Repeat commands have a block
I length associated with them (basc address of second word of command). A Repeat Test
' command Wwill continue until the fondition tested for is met,s o /¢ 7 e
4 f:ré:;'.r: .';';'(‘. & /\‘/ “i.kfil gt) e
2
: A
2—9

LR IR DN TSI A

RIS

ot

SECTION 2.3 — OPERAND ASSEMBLY

The assembling of the operand X prior to processing an opcode is com—
mon to all opcodes used by the Central Processor. Therefore, it is
seen that a thorough understanding of the process and significance of
assembling the operand X is necessary for effective use of the Central
Processor's capabilities. It is assumed that at this point the reader
has had some contact with what is meant by the operand X and thus only
a general discussion will be presented. If this assumption is incorrect,
or if the reader is at all hazy about the subject after reading the follow—
ing discussion, then the reader should refer to Section 2.2 of the
General Reference Manual or the first section of the Central Processor
Machine Language Manual. Detailed discussions of operand assembly,
with examples, are provided in the above—mentioned manuals. The
value of a basic understanding of this material cannot be too greatly
emphasized since a thorough understanding of much of the material
presented in later chapters depends upon mastery of the concepts of

operand assembly.

A command word in the Central Processor, as we have seen, carries an
operating mode M, an index address I, and a base adciress, A. All of
these, along with the contents of the OA register, can be used in assem=
bling the operand X of a command word. The exceptions to this rule are
the command words with opcodes which operate on one of the Bus reg—
isters or an index location, since in these cases the index address I is
used to specify the register or memory location (1 through 63) to be
operated on. It should also be noted that the use of the contents of the
OA register in assembling the operand X is not common practice, since
the contents of the OA register are always set to zero before assem-—
bling X if the previous opcode that was processed was not one of the
address preparation opcodes. The function of the address preparation

opcodes is discussed in the section below dealing with the general case

2=10

e L S

Eadnli SR e

RERET

B e R - S

T AR OEST

Qv

2.3

of operand assembly.

The operating modes associated with a command word specify the
manner in which A, I, and OA are to be used in the assembling of X.

Table 2.3—1 shows decoding that indicates the mode of operation.

TABLE 2.3-1 Operating Mode Decoding

B register bits CD register bits

Mode 29 28 14 13
0 0 0o 0 0

1 0 1 0 1

2 1 0 1 0

3 1 1 1 1

The general case of operand assembly is the most versatile and the
most commonly used. In it, it is assumed that (OA), (1), and A are all
available for use. There is a case that will be discussed later where
the above assumption is not valid. The manner in which the operand is

formed in the different modes is presented in Table 2. 3—2.

By use of the general case of operand assembly, it is seen that a large
number of modifications can be made to the operand by use of the con—
tents of the OA register and indexing. In operand assembly, indexing
can be very limitedly defined as using the contents of the index locat—
tions to change the operand of the command. A more complete discus—
sion of the index locations and their uses is presented in Section 2. 1.
The address preparation opcodes provide a second means of modifying
the operand, which, if déesired, permits the contents of the Accumu—

lator to be combined in various ways in the assembling of X.

2=11

TABLE 2.3-2 Operand Assembly, General Case

Mode_ Action Format |
0 (OA)+ A +(I) = X Number (
1 (cA)Y+ (AY+(I) = X Number J‘
2 ((cAa)+ A +(1)) = X Number or Logicd<
3 (OA) + (A) + (1) = X Number or Logic (
‘ where OA = Operand Assembly register R
J ‘ X = operand designator
1)l A = base address
‘ i I = index address
J\ | ' () = contents of (i.e., an address)
}f ‘ Logic* = logic format on final access for logic or logic test

opcodes.

It was noted earlier that there are opcodes where the general case of

operand assembly is not applicable. These opcodes belong to the _Index

I e,

! or Bus register command groups. In thesvewgp_uc;odes, the I field of the

P T Lt S
s

Bus register opcodes, the I field indicates which of the five Bus regis— ;

,‘ command wofd is used as an identification tag. If one of the index
%*’ ! opcodes is being processed, the I field of fhe command word specifies
4 g "i which of the 63 index locations is to be operated on. If it is one of the
L. |
|

ters (CA, J, H, U, or PE) is to be operated on. The method of assem—

bling the operand X under these conditions is the same as shown in

Table 2.3—2 with the exception that with these groups of opcodes, the I

field, (1), does not enter into the assembling of X. The assembling of

a0

i
4

the operand X under these conditions is presented in Table 2.3-3. |

SRR SR
)

In all instances, the arithmetic processes involved in assembling the

AT TR
==

2=12

CHAPTER 3

! 7 INTRODUCTION TO MACHINE ORGANIZATION
i

SECTION 3.1 — GENERAL

Similar to most all digital computer design, the Central Processor is
comprised of the four basic logic areas of: (1) Control, (2) an Arith—

metic Unit, (3) Memory, and (4) Input/Output. This in itself is neither

new or unusual, however, the method in which these areas of logic are

| handled within this particular computer needs to be thoroughly discussed

| ;) since the means of implementing these areas can vary greatly.
:
|
1 FIGURE 3.1—-1 Block Diagram of Central Processor Organization
o ARITHMETIC | & CORE = INPUT/
|) UNIT ———= MEMORY L gl OUTPUT
i 1;'

T DR AT S T T SRR R AT

OB

Figure 3.1-2 is 2 breakdown by Central Processor registers of

Figure 3.1-1. This figure shows registers of the various logic areas,
but this is not a complete logic breakdown. In particular, the area of
control is comprised of control registers and sequencers. The sequen—
cers are in reality a complex of logic circuitry that supervises the
operation of the opcodes listed in Table 2.2—1. This logic circuitry is
not shown in Figure 3.1-2 because of its complexity. Rather, for a
simplicity of presentation, all sequencer logic is discussed in B%,
Sequencer Control. The discussion of control that is presented in
Chapter 4 deals solely with control exercised by the registers of

Figure 3.1-—2 that are designated as the Control registers. Also, the
reader should realize that the breakdown of input/output as presented

by the Machine Diagram is not complete, since it deals only with pro—
visions within the Central Processor for input/output. For a discussion
of actual external input/output devices, the reader is referred to the
General Reference Manual. If a more specific discussion of a particular
input/output unit is desired, then that peripheral unit's technical manual
must be consulted. It should also be pointed out that input/output oper—
ations of the Central Processor are not discussed in this part of the
manual. Rather, due to the fact that a very thorough discussion of
input/output is necessary in Chapter 12 of P\gﬁri‘v’u where Sequencer 1

Control logic is discussed, the complete presentation of input/output is

postponed until Chapter 12.

IR R L LS SRR TR IR

C o=— 1 I(=3

/ ANIT NOLLYDINAWIWOD /

(59v] v
HOLVIANNDOV

NDIS
UIGNIVNIY

NOIS
LONAON

w

HIAILINW

UILNNOD

AFUNL

oTnaon
LLw]

WAS 40 LNANOGXH

S3 _

NOIS UNLY'INNADDOY / /
_
WALSIOAYN i WOUA
_ WALNNOD SLSINDIY [SEX] ER:23 s 41 an
VILOVUVHD LANUWALNI Of1 Ny | HELOVEVIED no3y | XOIHD Y suaarzdan suzANG
%04 LSINOIA LinsNvuL { \AL1Vd ANIT N
WILSIDIY £ OL .
$1SIN0IY LIAYHILINI O/t 3d
LNdLNO/LNdNI _ 1NINOJXE LNIOAVHOLIL

LINA JILIWHLINY

1SINOIY LANYHILNI

—

LHOLVUVINOD -HOLOVULIAS

LYVTIANNADDY 4O LN:

oV
& MILNNOD SSIUAAV

— \E!

v

_ INANOAXH HOLYINWNODOV

HOLYYINAN

_
5 _,__

d13
uzcmxu_ — ANVUIAO 4O LNINOJIXA a {vol
UOLYNIWONIQ

_ ENIT NOILVOINAWWOD / AOVJHIINI & AUOWIW \

AYOW3N HO0D _

_ s¥aAma SYIAIIDTYU SHTA DG SUTAITDTY ‘tan] 9
AUOWIW RHONAN AUONAW AMOWIW WIIING AUOWIW

AHOWSN FWOD 30 DNIQOD3a - h— |_
30T I0 - ss3uaay
SIATNAON ITNAON

_I TYNOLLIaaV isug

O1-HA) G _ _
AYONIW =zony

— |||I||||||_ I

_ ve [on] VD
$SANAQY ¥Iidng | . fss3uaAV ANVIROD

}

ONIGOD3IA FA0DO VW

SSTUAAY A WOWIW

N
_.30003Q UNVWINOD |

,.<<<»

AOWIW SSTUAAV)

SYILSI93¥ TOULNOD

I—1°¢ 2an81q Jo umopyeaid O1807 I0ossaedoad [eIlue) z—I[°¢ HUNDIA

