
R. L. ASHENHURST, Edit:or

An Interactive Graphical Display
Monitor in a Batch-Processing
Environment with Remote Entry

ALAN H. BOND, JERRY i~IGHTNOUR $
Carnegie-Mellon University,'~ Pittsburgh, Pennsylvania

AND

L. STEVEN COLES
Stanford Research Institute, Menlo Park, California

A graphic monitor program is described. It was developed at
Carnegie-Mellon University for the CDC G21 computer, which
is a general purpose, batch-processing system with remote
entry. The existing G21 system and the graphics hardware
are described. The graphic monitor is a resident auxiliary
monitor which provides comprehensive managerial capability
over the graphical system in response to commands from the
human user. It also will respond to commands from a user pro-
gram through a similar interface, where routine calls take the
place of manual actions. Thus the human and program can
interact on a symmetrical and equal basis through the medium
of the graphic monitor.

The choices made in designing the graphic monitor, given
the constraints of the existing hardware and computer system,
are discussed.

The structure of the monitor program and the human and
program interfaces are described. There is also a transient
swapping version with a small resident part, and provision for
swapped used submonitors.

KEY WORDS AND PHRASES~ graphics, graphic monitor, man/machine
interaction, graphic interface, graphics in batch environment, design of graphi-
cal system
CR CATEGORIES~ 4.30, 4.31, 4.39, 4.41

1. I n t r o d u c t i o n

In this paper, we describe the design of a monitor pro-
gram, developed for the CDC G-21 computer at Carnegie-
Mellon University, for managing the graphic hardware

The work reported here was supported by the Advanced Re-
search Projects Agency of the Office of the Secretary of Defense:
Contract Fe-44620-67-C-0058 and is monitored by the Air Force
Office of Scientific Research.
* Present address: General Electric Company, Phoenix, Arizona

Department of Computer Science

system and for providing an interface between the graphic
system and programs running on the G-21. The G-21 is
not a dedicated machine; it handles teletypes, filing, and
batch queues of programs for the user community. The
scopes can be used off-line by a human to set up and
manipulate display material in a buffer which is part of the
main addressable core of the G-21. The scope monitor is a
resident monitor wl~ich provides comprehensive mana-
gerial capability over the graphical system for the human
user. I t further provides an interface between any program
and the graphical system, so that human and program can
interact easily. The interface is designed to present as
nearly as possible the same interface structure to the pro-
gram as to the human, i.e. to be a "symmetr ic" interface.
Each action of the program is a routine call and corre-
sponds to a manual action available to the human.

The design of this monitor has provided a study of de-
sign of a graphic software system given the constraints of
the existing hardware and given the existing computer.

In Section 2, we describe the graphical hardware; in
Section 3, the characteristics of the G-21, both software
and hardware; in Section 4, the conception and design of
the scope monitor and the human interface; in Section 5,
the interface to user programs and interaction of human
with program; in Section 6, a transient swapping version
of the monitor; and in Section 7, the provision for user
submonitors.

2. G r a p h i c s H a r d w a r e

The hardware used in the system under discussion has
been described in [1] by J. T. Quatse and also in various
Philco documents [2], and in the Computer Display Review
[3]. Characteristics and properties of the hardware system
are briefly set forth here, mainly insofar as they are rele-
vant to the design of the software. The scopes, Philco
512's (Figure 1), were designed primarily for on-line work.
The system consists of a controller (scanner) and three
scopes. They have character and straight line ("vector")
generation. There are 256 characters which can be dis-
played in three sizes. Vectors can be drawn with any
length on a raster of 1024 X 1024 on a 10" X 10" screen.
The display material is held in an 8K buffer of 32-bit words
which is addressable by the G-21 central processor. Each
vector is represented by one word, and a composite figure
is represented by a string of vector words in successive
locations. The first word in the series, called a "header,"
refers to absolute coordinates on the screen and serves
merely to initiate the vector string. The rest of the vector
words give increments AX, AY by which the beam is

Volume 12 / Number 11 / November, 1969 Communications of the ACM 595

moved, with a bit to indicate whether visible or invisible.
No absolutely referenced vector strings are possible.
Character strings consist of a header giving the starting
screen coordinates o~ the string and then a series of charac-
ter words, each containing three characters. Character
strings are automatically formatted on the screen by the
hardware. A new line is automatically started when the
string reaches the edge of the screen or user set margins.
Margins are represented simply as characters and are
members of the string. Both vectors and characters have
an extra tag bit which causes them to blink or intensify if
the blink or intensify manual switches are set. The scope
is manipulated manually by using several devices. First
there is a set of manual switches (the "state switches"),
32 in all, constituting the state word. By appropriate set-
tings the human can initiate the entry of vectors using
cursor control switches or the Rand tablet, and the entry
of characters from the keyboards. The modified Rand
tablet controller allows continuous entry of vectors into
the buffer giving curve drawing by hardware alone [13]
(shown in Figure 1). There is also a lightpen, for pointing
only. There are automatic off-line facilities provided by the
scope hardware for inserting new material in the middle of
existing strings, deleting or correcting existing material.
In the buffer, the display material is arranged in blocks
which are stored in sequence in the buffer with scanner
controlling words directing the scanner in a regenerative
path around the buffer. Each scope can have up to four
independent blocks of display material associated with it,
called its "pages." Which pages are visible at a given
time is controlled by four of the state switches, one for
each page. Each block of material has an identifying com-
mand, called a "delimit," in front of it indicating on which
page(s) of which scope(s) it is to be displayed (see Figure
2). The manual entry of material into a page is controlled

FiG. 1. Pho to of scope 1 and Rand t ab le t

CHAIN OF
ADDRESS
POINTERS

DISPLAY BUFFER

FIXED REGISTERS
USED BY SCANNER

DELIMIT

DISPLAY SPACE
CURRENTLY USED

STORE

DELIMIT

STORE

DELIMIT

STORE

CYCLE

VED

TH OF
ANNER

Fro. 2. Schematic diagram of delimits, cycles, blocks, and stores

by whether or not the page is visible and whether or not it
is enabled, i.e. whether an enable bit is set in the delimit
word of the page. The new material is entered by the scope
hardware and the blocks are arranged to extend as new
material is entered, until they hit against the delimit of the
page next in the buffer. When this happens, an interrupt
bit is set by the scanner. There is also a compare interrupt
feature. To use this, a compare command is put into a given
block and designates a given character. When an instance
of this character is next entered into this block, an inter-
rupt is generated. Also available are 20 manual interrupt
buttons, so that 22 different types of interrupt can be
generated. These are distinguished by different bits in the
(32-bit) interrupt word, which also has room for a copy of
the compare character in the case of a compare interrupt,
since compares can be set for several different characters in
the same block.

In addition to the state word and the interrupt word
there is associated with each scope a position word. This
contains the current X, Y screen coordinates of the cursor
and also the current settings [0, 63] of two "analog knobs."
The latter give the ability for the communication of quasi-
continuous information from human to program.

These three words for each scope occupy fixed (address-
able) locations at the beginning of the buffer. There are
actually two sets of these words for each scope, each set
corresponding to a mode, which can be "normal" or
"al ternate ." This doubling up of all words and consequent
multiplication of the different types of block designation
turns out to be useful. Among other addressable registers
we mention the location register of the regeneration cir-
cuitry, i.e. the location currently being scanned and dis-

596 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 12 / N u m b e r 11 / N o v e m b e r , 1969

CPA
0 JO 20 20

MONITOR 200 160

120 IO0 200 160 f--r
, oo

SCOPES 2OO

I00 ~

l
iberaTOR

0 I0 20 20
CPB

Fie. 3. G-21 and H-module--upper numbering is equivalent to
addresses for CPA; lower numbering is equivalent to addresses
for CPB.

played by the hardware. Using this, it is possible to tell
where the scanner is and also to be able to reset it and to
trap it, using software. The scanner cycles about once
every 1/60 second, and when about 100010 words of display
material are scanned, flicker is noticeable but not in-
tolerable.

3. G - 2 1 H a r d w a r e a n d S o f t w a r e

As shown in Figure 3, the G-21 is a 64K, 32-bit, com-
puter with two Central Processors (CPs). The CPs each
address a separate 20Ks of core and also the rest of the
(shared) core, usually addressing as shown, but different
schemes are possible and can be switched by the operator.
There is a resident monitor which services about 50 tele-
types and schedules a card and teletype batch queue. A
user program is loaded into one of the two 25K slots and
runs to completion, with all printer output going through
the single accumulator. There is a large filing system on
two disks and an RCA race unit; most programs are stored
on personal files and merely called in by a short card or
teletype job. References to files are managed by the
monitor. All I /O from programs to the disk, race file, or
magnetic tape are handled by the monitor. As shown in the
diagram, the monitor is in three parts, two identical parts
(one for each CP) and a third shared part. This shared par t
handles shared facilities like I /O, e.g. disk routines, and
each CP can call upon these routines in the central section.
In the case of conflicts, one CP waits for the other to finish
with the disk routines.

The files in the system are divided into 30 classes or
" types ." The physical placement of these files is handled by
the monitor, and the user only refers to a given type and
gives the record number within that type. Different types
may have different record lengths. All the user card image
files are within one type, and there is a separate directory

system and file manipulation language ("AND") for these,
on top of the monitor facilities. AND is not conversational;
AND programs for manipulating files and running pro-
grams from files are themselves run as batch jobs.

The monitor services teletypes by obeying a small con-
trol language (each sentence of which starts with the key-
word $ =) which enables the human to setup his program
as a teletype "input file" on the disk. Thus each remote
has a single input file containing a program. By another
command the program is given a submission time, and the
set of submission times constitutes the teletype queue.
The monitor schedules by simply taking the lowest sub-
mission time. Associated with each remote is also an "out-
put file" of length 200 cards; a user program can output
material into this file, each card giving one line which can
be inspected from the teletype using the $ = language.

From each remote, only one program at once can be in
the queue; a new program can be submitted only after the
previous program has run. Thus, when using a teletype,
the user has to submit his program and then wait until it
runs. The maximum allowed execution time is 6 minutes
(this is a 6 ~sec machine) and this turns out to take about
12 minutes of real-time to run. The wait-time (i.e. turn-
around-time) is usually about 60 minutes. All compilers
produce nonrelocatable code to run in either a 25K slot or
two 25K slots; so an ALGOL program, say, can occupy
almost the entire 64K of core.

The interface between the user program and the monitor
is structured into a fixed set of routines and locations which
are used in the standard ways, and this is the only per-
mitted means of interaction. These routines and locations
are also given the same names (always of the form[n)
in all systems and languages that can access them.

Interrupts of the CPs are handled by an interrupt word
for each CP and all interrupts from the scopes set the same
bit in one interrupt word. The scope monitor can be exe-
cuted by either CP, chosen by manual switch settings at
the G-21 operator's console. The scope buttons will then
set the interrupt bit on the appropriate CP. Discrimina-
tion between scope interrupts is effected by their different
settings in the scope interrupt words in the display buffer.
The display buffer is a switchable 8K module which re-
places a regular core module when bits in a certain G-21
hardware ("status") register are set. Thus a given G-21
machine command referring to an address in [160000s,
177777s] with one setting of the status register refers to
one core box and on the other setting another core box.
The status register can be set by a machine command.
Thus a program can use the entire 64K of regular core
including addresses 160000s, etc., and can also use the
display buffer (also with addresses 160000s, etc.) by
switching it in as needed, using the status register. A pro-
gram can switch in the display module and use ordinary
machine commands to set up or read display material. The
accessing of the display buffer by the G-21 CP and by the
scope scanner is interleaved if there are any conflicts.

Volume 12 / Number]1 / November, 1969 Communicat ions of the ACM 597

4. Design of the Scope Monitor

Given the graphic hardware and the G-21 hardware and
software, software for graphics had to be designed with
several purposes in mind. It was desirable to use the scopes
for graphical activities, like drawing essentially independ-
ent of the CPU. Without software support, the manage-
ment of the buffer entirely off-line can be laboriously
effected using hardware switches on the controller; so
software aid was needed. This would presumably be sup-
plied by resident code and requested by interrupt.

Also wanted was the capability of saving display mate-
rial on files and using the scopes as teletypes for submitting
programs into the batch queue. Arrangements for user
programs interacting with the scopes were also desired.

I t was decided to implement a monitor program aux-
iliary to the main monitor, and, in the initial design, resi-
dent in the actual display buffer. Thus the display buffer
would contain code and display material. The code would
contain entry points, and control would be passed to it
from the main monitor when a scope interrupt was de-
tected. Requests to the scope monitor would be made by
the human, usually by interrupt button, and the func-
tions available for request would include management of
the display area, saving of display material on files, sub-
mission of programs, etc. The scope monitor would service
the three scopes individually and simultaneously. The
scope monitor would also respond to requests from a user
program, and thereby provide an interface between a
human and a user program.

ORGANIZATION OF REQUESTS. The scope monitor is
structured as an interrupt service routine (ISR) with a
fixed entry point and, corresponding to the many actions
performable by it, a set of routines referenced through
tables in a data area. The requests are organized into sets
of 10 or so, there being 20 interrupt buttons, and the con-
cept of state introduced. In a given state, the interrupts
have certain meanings specific to that state. The meanings
are indicated to the human user by explanatory (system)
displays, like menus (Figures 5, 6, 9, 10). In every state,
interrupt number 1 causes the system display to be visible
or invisible. The change from one state to another is
effected by interrupt, and as there are only six states
implemented, this is accomplished by defining an option

598

OPTION PAGE

PRESS INTERRUPT NUMBER

2. MANAGEMENT STATE

3. PROGRAM STATE

4. DEBUG STATE

5. USER MANUAL

6. USER PROGRAM INTERACTION STATE

7. TEXT EDITING STATE

8. LOG OUT

FIe. 4. Option page

C o m m u n i c a t i o n s o f t h e kCM

state the meaning of whose interrupts is to select a given
state (see Figure 4). Interrupt number 0 in any state
returns one to the option state (see Figure 5). Thus the
monitor keeps a counter indicating which state it is in,
and associated with each state, a table of routine entry
points to be entered upon interrupt. The interrupts are
organized into two priorities: (1) interrupt 0 and memory-
full and compare interrupts, given high priority and called
"immediate interrupts"; (2) all others, called "regular
interrupts."

ORGANIZATION OF THE DISPLAY SPACE. The core not
occupied by code is organized into an available display
space, with fixed size blocks of length 16010 words, initially
as one "glob." In addition, copies of the system display
messages are resident and part of the data area. Thus the
regeneration cycle executed by the scanner goes through
the system messages and then jumps to the regular display
space. System pages can be made visible or invisible to any
combination of the three scopes by setting appropriate bits
in their corresponding delimit words.

The user can request display space to be reserved for a
given page by asking for a certain number of blocks. He
can also delete any of his pages and can enable or disenable
any of them for manual entry. All user pages are in normal
mode, and the system pages are disenabled and in alternate
mode. The monitor keeps tables of space allocations and a
table of available "globs"; no repacking is performed. In
addition to space used for user pages, the scope monitor
uses globs of core for working areas, not always display
material, and these it obtains from and returns to the
display space.

Requests involving core space and disk files are made in
the management state (Figure 6). Note that the reorgani-
zation of the display space by the scope monitor can in
certain cases present a malformed regeneration path to the
scanner. By being able to address the register containing
the working location of the scanner, the scope monitor
can trap the scanner momentarily while it alters the buffer.

LOG IN LOGOUT

"--~-~ OPTION STATE

T
INTERRUPT ZERO IN ALL STATES

Fie. 5. State hierarchy

V o l u m e 12 / Number I t / November, 1969

INPUT OF PARAMETERS FOR REQUESTS. M a n y of t he
requests have parameters which are typed in from the
keyboard. This is achieved by having three small display
blocks in the data area and in the regeneration cycle as
input buffers for the three scopes. When input from a given
scope is required, all other display blocks for tha t scope
are temporarily disenabled by altering the delimit bits
and are made invisible by altering the page switches in the
state word, and the input buffer is enabled as a page. I t
actually is designated as Page 1, but this cannot conflict
with the user's own Page 1. The cursor is also appropri-
ately set, over the system message, by setting the cursor
position par t of the position word. Thus the user sees the

MANAGEMENT PAGE

PRESS INTERRUPT NUMBER

2. SAVE PAGE AS SCOPE FILE

3. READ IN SCOPE FILE AS PAGE

4. APPEND PAGE TO PAGE

5. DISPLAY DIRECTORY OF SCOPE FILES

G. GET BLOCKS FOR PAGE

?. ENABLE PAGE

8. DISENABLE PAGE

9. DELETE PAGE

I0. CREATE BLOCKS FOR SCOPE FiLE

I I . SETUP AND FILE FOR TEXT EDITING USER SHEET TAPE

12. PUTBACK AND FILE FROM TEXT EDITING USER TAPE

FIG. 6. Management page

system display with a gap for a parameter and the cursor,
but the cursor is actually par t of the input buffer, another
display block in the display memory. The user then types
in characters, apparently filling in the space in the menu,
like filling in a form. However the form itself is unaltered,
and the characters go into the input buffer page.

In the buffer, a compare instruction is set for the return
character, and when the user has typed in the characters
he enters a return character which triggers the scope
monitor to process the input information and return dis-
play conditions to normal. The memory-full interrupt 's
meaning during this time is set to go to the same entry
point as the compare interrupt, in case the buffer is filled
accidentally.

THE DISK. To save pictures on files, each scope user
is allocated 20 files of indefinite length; each file can hold
one picture only. The transfer of a given page to a given
file and vice versa is requested by interrupt. The scopes are
allotted disk space in the G-21 system and the scope moni-
tor manages it; however, all disk transfers are effected by
having the scope monitor pass a request to the main
monitor giving the relative addresser type and record
number. The disk available space with the allotment is
managed on a glob basis with blocks of size 16010 words
and with an available glob list, with no repacking. The
user can request a display of a directory of his files.

The request to the main monitor for a disk transfer is

made on the same basis as the sharing of common routines
by the main monitors on the two CPs, viz a binary switch
is checked, and if set, the scope monitor "waits" until it
becomes clear, before entering the communal disk routine.

WAITING AND THE STACKS. Many requests involve the
execution of a set of routines in the middle of which we
may have to wait, either for the disk routines to become
available or for the human to type in a parameter. The
wait-times may be on the order of many seconds, and we
want to be able to process other interrupts during this
time including those for requests from other scopes in-
volving waiting. This is arranged as follows (see Figures 7
and 8). All variables local to routines are put in a stack,

CONTROL FROM MA,N MON,TOR

OPEN ,NTE RUPT

SAVE MAIN MONITOR REGISTERS
AND PARAMETERS

1
CLASSIFY INTERRUPTS

PERFORM IMMEDIATE INTERRUPTS

1
SAVE USER PROGRAM INTERRUPTS

PERFORM REGULAR INTERRUPTS

PERFORM ANY DISC REQUESTS

1
PERFORM ANY CONTINUOUS

OPERATIONS

YES=

RESTORE MAIN MONITOR REGISTERS
AND PARAMETERS

CONTROL BACK N O = ~ , ~ Y E S CONTROL
~ U S E R P R O G R A M ~ "TO

TO MAIN MONITOR ~ , ~ I T ~ O ~ [O T ~ ' " ~ USER PROGRAM

RETURN OF CONTROL FROM USER, PROGRAM

Fie . 7. ISR flowchart

and there is a separate stack for each scope. Thus data,
which needs to be set up and used later after a wait during
which the same routine is executed but at the request of
another scope, will be safe. Next, whenever we reach a
point in the code which potentially could cause a wait, we
merely set up an internal request to do the operation and
then return to the ISR, look for other requests to satisfy,
and if none, return to the main monitor. In the ISR, we
find the internal request and see if we can carry it out
immediately; if not, we leave it alone, and next t ime
through, t ry again. In addition to the manually generated
interrupts, the scopes also receive clock interrupts, one
per second. This is not frequent enough to allow us to

V o l u m e 12 / Number l I / November, 1969 C o m m u n i c a t i o n s o f t he ACM 599

dispense with manual interrupts. The typical response
time is negligible; whereas, when based on clock interrupts
only, the response is sluggish and the whole rhythm of
human interaction is different.

When the internal request is completed, we return to
the point in the code execution where the request was set
up and continue. The disk requests are completed by the
disk routines becoming available, control being trans-
ferred to them and then returning. The manual type in
requests are completed by triggering either a compare or
a memory-full interrupt. In this case, control from the ISR
is passed to a routine set up during the request.

The return to the ISR during an internal request is
effected by setting a global return location, since control
can return to and leave from the ISR at any of a number
of points. The ISR is divided into a number of sections,
each of which has a return location which is set as the
global return location upon entry into the section. The
execution location at which the internal request was ini-
t ia ted can be found from the stack, since all routine return
locations are also stored in the stack. The stack increment
is also stored in the stack, since it is different for different
routines.

Finally, at the end of the total request, which may have
involved several waits, control is passed to an exit routine
which cleans up and returns control to the ISR.

CONTINUOVS OPERATIONS. There is also general pro-
vision for continuous operations, which are routines not

TOTAL

FROM ISR

STACK n I PARAMETERS
ROUTINE I CALL ROUTINE 2

ROUTINE 2 STACK n 2 PARAMETERS -THIsSTACK - - ~ A T

T O ISR SET UP DISC REQUEST PO NT

FROM ISR i

POP STACK
ROUTINE 2 EXIT TO RETURN LOCATION IN STACK

E.,BACK TO RETURN ROUT NE

USE THE PARAMETERS IN THE STACK
ROUTINE I CALL ROUTINE 5

PUSH STACK n I PLACES I STACK AT
SET UP COMPARE INTERRUPT I THIS

ROUTINE 3 DEFINE COMPARE ROUTINE TO BE -POINT - - •
T O ISR ROUTINE 4(FOR CURRENT SCOPE)

FROM ISR i

RETURN TO STACKED LOCATION
ROUTINE I.E., ROUTINEI

ROUTINE I CALL EXIT ROUTINE

I EXIT ROUTINE
T O ISR CLEAR STACK AND WORKING AREAS

FIG. 8.
control;

STACK ni+n2+4
INCREMENT
RETURN
LOCATION I

n I PARAMS.

n l + 2

RETURN
LOCATION 2

n 2 PARAMS.

n 2 + 2

n I + n 5 + 4

:RETURN LO(

11PARAMS.

n l + 2

:SET. LOC. 3

13 PARAMS.

n 3 + 2

The processing of a typical request--solid line, actual
broken line, apparent control.

involving waiting but are executed every time control
passes through the ISR, i.e. roughly once per second. An
example of this is the continuously generated core dump in
the debug state, Figure 9.

T~IE DEBUG STATE. This provides requests for patch-
ing the core and doing a routine transfer (the "TRIM" in
Figure 9) as well as the continuous core dump, which can
show any par t of the entire core, and in fact one can watch
the execution of programs on the other CP!

RECOVERY AND ERRORS. The scope monitor may ac-
quire working space for use while it is in a state. In this
case, it sets a "s ta te removal routine," so that the process
of changing state involves first executing the currently set
state removal routine. During an interrupt request, rou-
tines may also get working space. All working space is
referenced in fixed working tables, and its removal is per-
formed by the global exit routine. In the case where the
user makes one request involving a wait and then changes
his mind before the completion of the request by making a
further and more immediate request, the scope monitor
has to find out what had been reserved and then delete it.
This is always possible due to referencing the space in a
standard way and knowing that any space referenced
from there must be removed at the end of a request or
during a change of request. In the case of errors, a similar
clean up is done.

A small number of error messages is used for display to
the user. Errors fall into the categories of (1) unacceptable
requests, (2) undefined requests, (3) overflow of space re-
quirements, (4) facilities not yet implemented or tempo-
rarily out of system, (5) "impossible" system errors.

SUBMISSION OF PROGRAMS. The scope can be used as a
teletype. In ter rupt requests are provided in the program
state (Figure 10). To submit programs into the teletype
queue, the program is typed onto a display page and then
an interrupt request takes this material and converts it to
G-21 characters, formats it as card images, and places it in
a teletype inputfile on the disk corresponding to the scope.
Thus each scope is allotted a remote number in the G-21

0 0 5 3 4 4
0 0 5 5 5 0
0 0 5 3 5 4
0 0 5 5 6 0
0 0 5 3 6 4

DEBUG PAGE

O. OPTION PAGE

I . CLEAR INPUT

2. STORE INPUT

3. LOAD INPUT FROM MEMORY

4. SWAP INPUT

5. TR M

Io0000000000[

00000000467 00000073626 00000001453 04050005632
0 1 5 5 0 0 0 0 1 0 0 01750005652 0 0 0 5 0 0 0 0 1 0 0 0 5 5 5 0 0 0 6 7 3 2
0 1 7 3 0 0 0 6 7 3 2 0 1 7 7 0 0 0 7 5 4 6 O00000000CO 0 0 0 5 0 0 0 0 0 0 4
0 0 1 7 0 0 0 5 3 5 3 0 0 0 5 0 0 0 0 0 0 2 0 1 7 7 0 0 7 6 6 6 6 0 1 7 7 0 0 0 5 3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 7 7 0 0 0 5 1 0 6 0 1 7 7 0 0 0 3 1 0 6 0 0 1 7 0 0 0 4 3 1 2

THIS SPACE RESERVED FOR SYSTEM MESSAGES

Fie. 9. Debug page

600 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 12 / Number 11 / November, 1969

PROGRAM PAGE

PRESS INTERRUPT NUMBER

2. CONVERT PAGE AND MOVE

3. MOVE PAGE (UNCONVERTED)

4. SUBMIT INPUT FILE ~ TIME PAGES

5. DISPLAY INPUT FILE AS PAGE

B. DISPLAY OUTPUT FILE AS PAGE

7. FORWARD TEN LINES

B. BACK TEN LINES

9. LOAD MONITOR MODULE OF USER

IO. TRANSFER TO ENTRY POINT OF MODULE OF

I I , RELEASE MODULE OF USER

lB. ALLOW PROGRAM FROM SCOPE TO INTERACT

F:G. 10. Program page

TO INPUT FILE

TO INPUT FILE

SYSTEM

USER

system and provided with input and output files on the
disk, along with all those for other remotes, within a rela-
tive addresser type reserved for tha t purpose. The action
of placing this program in the queue is performed by a
separate request, which takes a parameter and automati-
cally sets up the correct job card as well as notifying the
main monitor of the submission time.

Because the user wants to interact with his program at
run-time, we did not want the usual wait-time for tele-
types. We solved this problem by making the scope pro-
grams have priori ty--giving them an artificially low sub-
mission time, so that a scope program when submitted is
at the top of the queue. The user then only has to wait for
the currently running program to terminate, about 6 min-
utes on average. So that this priority is not unfair to tele-
type users, since this is not a dedicated machine but a
general machine serving the entire user community, further
submissions from the same scope are prevented (a request
would elicit an error message) until a t ime had elapsed
equal to that which a teletype user would have had to wait.

The perusal of input and output files, each with 200 card
images, is effected by requests to select the file, placing 5
blocks (about 30 lines) from the file on a display page and
then pressing a but ton interrupt for forward and backward
motion of 1 block, which is about 6 lines. Pressing the
but ton causes the test to be replaced by the updated
sample of the file, giving the impression of "roll round."
The request, involving one disk access, takes about half a
second.

TRACING THE MONITOR. To find some of the harder
bugs, we have switchable trace printing into the scope
monitor. This is a tricky operation, since the code assumes
that it will not be interrupted during some segments of
code and the interface between the main monitor and the
scope monitor is very complicated and again assumes
noninterruptibility at times. Of course, printing involves
interruption. We get around this by (1) preventing the
processing of more than one interrupt at once by the scope
monitor and (2) making the printing be officially per-
formed by a special user program; thus the scope monitor
passes printing material to this program and triggers it and
waits in an interruptible state until printing is completed.

In this way we are able to obtain comprehensive printing
of the action of the scope monitor, and, during debugging,
this is a great asset.

5. U s e r P r o g r a m I n t e r a c t i o n

Having supplied a comprehensive set of requests for the
human user, activated manually, we then provide a very
similar set of requests for any user program running on the
G-21. This is achieved by an interface of entry points to
routines called, in all available languages, "B-routines."
All interaction with the scopes by a user program is re-
stricted to calls upon these routines. A list of B-routines
and their meanings is given in Figure 11. Display material
is handled by setting up the material in a block in the
user program data area and, by means of a B-routine call,
requesting that it be moved to a designated page of a
designated scope and vice versa. Note that neither the
program nor the human use delimits; they just work with
display material--headers, vectors, etc. The delimits are
handled by the scope monitor as part of its management of
the display area.

Conversions between the scope character set and the
G-21 character set are provided. By means of the interface
(Figure 12), the program can do anything a human can do.
Eight of the switches are not used by the scope hardware
and are for use in human program interaction.

We have the following means for human program inter-
action:

(i) By
(a)
(b)

(ii) By
(a)

(b)
(c)

mutual display.
Each displays text to be read by the other.
Each displays a general display of lines and
text.
means of hardware attachments.
Analog knobs set by human and read by pro-
gram.
Cursor can be set and read by both.
The eight switches can be set and read by both.

B ROUTINES

B(- I) . ANNOUNCE USER PROGRAM TO SCOPES.

B(O)AND B(I). CONVERT CHARACTERS TO AND FROM DISPLAY FORMAT.

B(2) AND B(3), MOVE CHARACTERS AND VECTORS TO DISPLAY REGION.

B(4)AND B(5) .MOVE DISPLAY REGION INTO PROGRAM ARRAY.

B(6)AND B(7). READ AND SET THE CURSOR.

B(B) ,B(IO) ,B(I I) .READ KNOBS, READ SWITCHES AND SET SWITCHES.

B(12),B(I$),B(21),B(22).SET COMPARE CHARACTER, DEFINE COMPARE

ROUTINE, REMOVE COMPARE CHARACTER, RESET COMPARE ROUTINE.

B(I4)= B(23). SET MEMORY-FULL ROUTINE AND RESET.

B(15), B(16), B(17), B(18), B(19), B(20), B (BB). GET DISPLAY SPACE FOR A

PAGE, ENABLE THE PAGE, DISENABLE THE PAGE, DELETE THE

SPACE FOR THE PAGE, DISENABLE ALL PAGES, CLEAR A PAGE.

B(24) . SET COMPARE CHARACTER, COMPARE ROUTINE AND SET

CURSOR TO RECEIVE STRING.

B(25) .DEFINE BUTTON INTERRUPTS.

B (26). DISPLAY GIVEN PAGE ON ANOTHER SCOPE.

B(42) . DECLARE "AND" FILES AS SUBSYSTEM FILES.

B (4 3) . RETURN CONTROL AFTER INTERRUPT.

FIG. 11. List of B-routines

'Volume 12 / Number 11 / November, 1969 C o m m u n i c a t i o n s of the ACM 601

In addition, we have program-defined interrupt entry
points:

(iii) (a) Compare interrupt on a certain (set of) charac-
ter(s) on a certain page

(b) Memory-full interrupt
(e) But ton interrupts 1-19.

The interrupt entry points are defined by a B-routine call.
The scope monitor is pu t into a state, called the "user pro-
gram interaction state." In this state, the meanings of the
interrupts are no longer given by a "menu," but will cause
control to be transferred to the defined user program entry
points. Thus the program has full freedom to use all inter-
rupt facilities and this gives fast response, interrupting
being faster than checking a switch. One gets back to the
option state by interrupt 0 and can change freely back and
forth between interaction with the user program and inter-
action with the scope monitor. If a program error occurs by
an incorrect B-routine call, the human is notified by an
error display and the program is notified, also, by error
switches and an error number. The processing of user inter-
rupts in the scope monitor follows the normal classification
procedure, but since the settings of many monitor switches,
e.g. memory protect, are different for the user program
than for the scope monitor and since we cannot rely on
control returning to the scope monitor from the user pro-
gram, we t reat them differently.

The transfer of control to the user program interrupt
entry point is delayed until all other processing "this time
through" is completed. I t is delayed until we have reset
all switches, and it would normally return to the main
monitor and often from there to the normal line control in
the user program. At this time, we, instead, transfer con-
trol to the interrupt entry point in the user program. Con-
trol can be returned to the scope monitor by the user pro-
gram directly or by a special B-routine call. This has the
effect of returning control ult imately to the interrupted

INSPECTION
ENTRY
POINTS

~EQUEST
ENTRY
POINTS

PROGRAM

NTERRUPT "

~ENTRY
POINTS

STORED
V A R I A B L E S

I

N
T
E
R
F
A
C
E

DISPLAY I
MATERIAL --

ENTRY AND
RECEPTION

OTHER
HUMAN

INSPECTIONS

SYSTEM

REQUESTS

PROGRAM
REQUESTS

F~G. 12. Human program interface

line of computation. Otherwise, the program continues in
the new line of computation.

We originally allowed different entry points for different
interrupts; however, it was found more convenient to have
one entry point in the user program and to pass informa-
tion on the nature of the interrupts. This is done by
declaration of communication locations to the scope
monitor by the user program, by means of a B-routine.

A location in the user program data area is, for example,
declared as the interrupt number. Then, when control is
passed to the user interrupt entry point, the interrupt
number is placed in this agreed location by the scope
monitor. Other communication locations are for the charac-
ter interrupting in a compare interrupt and for the number
of the scope interrupting in the case of multiscope inter-
action. A further location is used as an interrupt control
switch. When this is set the scope monitor will not pass
control but will keep looking, each time through the ISR,
until the switch becomes unset. User interrupts are not
queued; a further interrupt, activated before the first is
transferred, will cause the first to be replaced by the
second.

The program can tell which scope it is interacting with,
the one it has been submitted from, by examination of a
register. I t can interact with other scopes by setting this
register to a different value and using the B-routines in the
usual way. Such B-routine calls will have error exits unless
permission to interact has been given by the human at the
scope concerned. Permission can be given by interrupt
request.

INTERACTIVE PROGRAMMING IN HIGH LEVEL LAN-
GUAGES. The user program interface can be incorporated
as a package in any language, and we have incorporated it
in ALGOL and Formula ALGOL. There are a lot of problems
in trying to interrupt a program in these languages. We
have "B-procedures" in ALGOL and Formula ALGOL and a
package of procedures in these languages giving compre-
hensive high level facilities. A further experimental
graphical language, GRASP [6], was developed by Gene
Thomas, writ ten in ALGOL and used either as a language
processing system or an outer block to any ALGOL program.
These interfaces are discussed in a further paper [4].

SECURITY. Only allowed users are allowed to "log in"
and nothing can be requested until a successful log in has
been obtained. This is simply effected by presenting the
user with a log in message so that he types in his user
number. This is then checked against a file of allowed
user numbers held on the disk in a master directory.
Upon leaving a scope, a user logs out.

We also prevent the user in the debug state from patch-
ing anything other than his own program.

As described above, the user can interact only with a
program submitted by himself unless given explicit per-
mission by the other user. This is effected by making the
program announce its presence to the scopes by a call on a
certain B-routine. Only after this call can other B-routines
be called or the human put the scope into the user program

6 0 2 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 12 / N u m b e r 11 / N o v e m b e r , 1969

interaction state for user interrupt processing. The an-
nouncement of the program causes switches to be set and
these are cleared at the termination (either normal or ab-
normal) of the user program, by the main monitor, which
passes control to the scope monitor at this time.

The main use to which the system is put is for indi-
vidual users to develop interactive programs in high level
languages for specific scientific and engineering problems.
In Formula ALGOL, there is a program for graphically
manipulating algebraic formulae in textbook format by
F. R. A. Hopgood and a graphical inference system by
L. S. Coles [9]. In ALGOL, there is an interactive pattern
recognition program [10], a computer-produced movie
program, an interactive job-shop scheduling program [11],
and an interactive oil drilling simulation program [12].
In assembly code, the G-21 Brooker-Morris system has
been given an interactive graphic input-output capability.

6. Trans i en t Vers ion

In a new version, close to completion, the scope monitor
has been restructured as a small resident part ,~ 100010
words and a set of relocatable modules of code (total size
400010 words) which swap as required from the disk. This
should allow a total display area of ~ 700010 words, which
is much more than the scanner can scan without bad
flicker. Resident are the data area of the scope monitor,
the composite ISR, and the swapping routines. All the
rest of the code for carrying out requests and also the sys-
tem messages are transient. The transient code is organized
into groups of routines, which are treated as swappable
units. Each such "module" has a number of entry points in
standard locations relative to the first word, and all refer-
ences between modules must be by means of a transfer to
a given entry point number. The available space is shared
then by display pages, system code, system messages, and
temporary working data, all of which are organized as
blocks with a leading delimit. In the ease of nondisplay
material the second word is a zero, so that the display
scanner simply jumps around the block.

When a module is swapped in, it is relocated by altering
the actual code by a simple relocation algorithm, since the
machine does not have base registers. Modules are never
swapped out; they are overwritten when the space is
needed. "Retention bits" can be set, so that the space is
not released, making the module resident until the bits
are unset. In this way code can be continually swapped
but data retained. We minimize the number of swaps by
blocking related routines together, and also we leave the
module in position until the space is actually needed for
something else. Modules of code are shared by all three
scopes and can be retained and released by any combina-
tion of the three scopes without confusion.

Modules are assembled by a system of macros in the
assembler, SPITE. This flags words which will need modifi-
cation for relocation at run-time. Using an auxiliary "scope
module assembly package," the modules are assembled
and dumped onto disk files at assembly time, and the disk

V o l u m e 12 / Number I1 / November, 1969

locations are automatically assembled into a table in the
resident scope monitor data area. References by modules
to locations in the resident part are assembled by using
the symbol table of the resident part at assembly time.

7. User S u b m o n i t o r s

The package of macros and routines for assembling the
transient version and the swapping system can be used by
any user to produce a "submonitor." This can consist of an
indefinite number oi modules, just like the scope monitor
itself. The initiation of requests to such systems is by in-
terrupt and there are currently three interrupt specifica-
tions for this purpose provided in the program state
(Figure 10). User submonitors interface with the facilities
of the scope monitor by using the B-routines. They have a
slightly different way of calling these routines and of ad-
dress checking, and error recovery had to be generalized to
deal with this case.

Reentrant modules use the scope monitor's stacks for
storage of local variables; this is arranged by the macros.
Modules can call each other recursively, and this is kept
track of by counters in the head of the module. A module
can be called reeursively to a depth of 32, and it can be
called by all three scopes simultaneously and independ-
ently before overflow of this counter occurs. I t is also
possible for a call of a routine by one scope to have an
error exit and to clear the counter, etc., without disturbing
simultaneous cMls on the same routine by the other scopes.

Before these facilities were developed, M. Coleman
wrote a text editing subsystem [5]. This is a block of non-
relocatable code which swaps into a fixed position. I t pro-
vides a comprehensive set of text-editing facilities acti-
vated by interrupts or by hand drawn proofreader's
symbols, which it can recognize. The text is swapped on
and off a page from a special region of the disk. To move
text to and from "AND" files and this editing area,
auxiliary G-21 programs are automatically submitted by
the scope monitor (they do not disturb the wait-time for
submission of programs) upon interrupt request by the
human. The main reason for this is to obtain permission to
access the AND files, from the main monitor, which in-
volves an elaborate checkout procedure. The text editor
is now an established part of the graphics system; it corre-
sponds to a special text-editing state.

8. C o n c l u s i o n

After an initial design phase of six man-months, the
scope monitor was started in June 1966, and two men
worked on it for three months and released an initial ver-
sion with limited user program interface. Then one man
worked (part-time) for a further year and fully debugged
it, extended the user interface, and developed the transient
version. He also produced complete user documentation
[7] for the system. Thus, in only two man-years, we have
produced a comprehensive graphical monitor, which pro-
rides a workable and general interface for human/program

(Continued on page 607)

C o m m u n i c a t i o n s o f t h e ACM 603

tial locks appear to be unavoidable. The major difficulty
associated with such primitives is tha t if more than one of
them operates in the data base at the same time, a dead-
lock is possible. One such primitive, however, may operate
in parallel with other primitives using the two-step algo-
r i thm without the possibility of deadlocks as long as the
other primitives do not use essential locks.

5. M o r e C o m p l i c a t e d L o c k i n g P r o c e d u r e s

Additional parallelism can be obtained in the data base
if account is taken of the fact tha t it is often possible for
several primitives to operate on a single node without
interfering with each other. The most obvious example of
this is primitives which do not modify information in a
node. In addition, it is often the case that a primitive
which changes a complete unit of information in a single
instruction can be executed simultaneously with one or
more primitives which only read. Finally, it may be the
case that two primitives which modify the node operate
on disjoint sets of information in the node, and so they can
effectively be carried on at the same time.

To accommodate this type of parallelism it is possible
to associate a vector lock with each node such that the i th
coordinate of the vector corresponds to the i th primitive
type and represents the number of primitives of tha t type
currently operating on the node. In addition, each primi-
tive carries along with it one or more binary vectors
corresponding to the different types of nodes it expects to
encounter. The i th bit of the latter vector, corresponding
to a particular type of node, is 1, if the primitive carrying

Bond, et al.--cont'd, from page 603

interaction. The code occupies only 500010 words. These
figures are somewhat below current estimates of space and
time for a graphical system. We regard the system as
essentially finished and stable at the present time.

I t is hoped that we have shown in this paper how we
designed and implemented the system, given the graphic
hardware and the existing computer environment of a
general purpose batch-processing machine with remote
access. We tried to describe clearly the internal design of
the monitor, the use of stacks and the design of the
transient version. The design of the user interface repre-
sents a definite at t i tude to the problems of interactive
software.

Acknowledgment. The authors would like to thank
R. A. Kru ta r for many helpful suggestions and also pro-
gramming aid.

REFERENCES

1. QUATSE, J. T. A visual display system suitable for time
shared use. C.I.T. publication, Carnegie-Mellon U.,
Pittsburgh, Pa., 1966.

Volume 12 / Number 11 / November, 1969

the vector cannot operate in a node of tha t type at the
same time as a primitive of type i. The lock is tested by
forming the dot product of the node's vector lock and the
appropriate binary vector associated with the primitive.
If the dot product is zero then the node is unlocked for the
primitive, which then increments the node's vector lock
in the appropriate position and begins operating in the
node. Since the testing and setting of a vector lock cannot
be done in a single instruction, it may be necessary to
associate a 1-bit lock with the vector lock to prevent more
than one primitive at a time from operating on the vector
lock.

REFERENCES

1. LAMPSON, BUTLER W. A scheduling philosophy for multi-
processing systems. Comm. ACM 11, 5 (May 1968), 347-360.

2. DALEY, R. C., AND NEWMANN, P. G. A general purpose file
system for secondary storage. Proc. AFIPS 1965 Fall Joint
Comput. Conf., Vol. 27, Pt. 1, Spartan Books, New York, pp.
213-229.

3. DENNIS, JAcKB.,ANDVANHORN,EARLC. Programming seman-
tics for multiprogrammed computations. Comm. ACM 9, 3
(Mar. 1966), 143-155.

4. DIIJKSTRA, E. W. The structure of "THE"--multipro-
gramming system. Comm. ACM 1I, 5 (May, 1968), 341-346.

5. HAVENDER, J.W. Avoiding deadlock in multitasking systems.
I B M Syst. J. P, 1968, 74-84.

6. SHOSHANI, A., AND BERNSTEIN, A. J. Synchronization in a
parallel accessed data base. Teeh. Rept. No. 69-C-138, Gen-
eral Electric Res. and Develop. Center, Mar. 1969.

RECEIVED JANUARY, 1969; REVISED MAY, 1969

2. Internal documents on the Philco READ display system.
Philco-Ford Corp.

3. Computer Display Review. Adams Assoc. Inc., Bedford, Mass.,
1967.

4. BOND, A . i . A graphical interface in ALGOL. (In prepara-
tion)

5. COLEMAN, M. Text editing on a graphic display device as an
example of simplicity in man-machine interaction. Rep.,
Carnegie-Mellon U., Pittsburgh, Pa., 1968.

6. THOMAS, E. M. GRASP user manual. C.I.T. Int. doc.,
Carnegie-Mellon U., Pittsburgh, Pa., 1966.

7. GRASP--A graphic service program. Proc. ACM 22nd
Nat. Conf., 1967. Academic Press, New York, p. 395.

8. BOND, A. H. Scope user manual. C.I.T. doc., Carnegie-
Mellon U., registered with Defense Documentation Cen-
ter as AD 669 105, 1967.

9. COLES, L. S. GRANIS. Ph.D. Th., Carnegie-Mellon U.,
Pittsburgh, Pa., 1967.

10. CALVERT, T.W. Ph.D. Th., 1968. Carnegie-Mellon U., Pitts-
burgh, Pa., 1968.

11. GARMAN, M. Ph.D. Th., Carnegie-Mellon U., Pittsburgh,
Pa., 1969.

12. COHEN, G. Ph.D. Th., Carnegie-Mellon U., Pittsburgh, Pa.,
1969.

13. SHOUP, R. Internal document, Engineering staff, Computer
Science Dept., Carnegie-Mellon U., Pittsburgh, Pa.

RECEIVED NOVEMBER, 1968; REVISED JUNE, 1969

Communications of the ACM 607

