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A graphic monitor program is described. It was developed at 
Carnegie-Mellon University for the CDC G21 computer, which 
is a general purpose, batch-processing system with remote 
entry. The existing G21 system and the graphics hardware 
are described. The graphic monitor is a resident auxiliary 
monitor which provides comprehensive managerial capability 
over the graphical system in response to commands from the 
human user. It also will respond to commands from a user pro- 
gram through a similar interface, where routine calls take the 
place of manual actions. Thus the human and program can 
interact on a symmetrical and equal basis through the medium 
of the graphic monitor. 

The choices made in designing the graphic monitor, given 
the constraints of the existing hardware and computer system, 
are discussed. 

The structure of the monitor program and the human and 
program interfaces are described. There is also a transient 
swapping version with a small resident part, and provision for 
swapped used submonitors. 
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1. I n t r o d u c t i o n  

In  this paper, we describe the design of a monitor pro- 
gram, developed for the CDC G-21 computer at Carnegie- 
Mellon University, for managing the graphic hardware 
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system and for providing an interface between the graphic 
system and programs running on the G-21. The G-21 is 
not a dedicated machine; it handles teletypes, filing, and 
batch queues of programs for the user community.  The 
scopes can be used off-line by a human to set up and 
manipulate display material in a buffer which is part  of the 
main addressable core of the G-21. The scope monitor is a 
resident monitor wl~ich provides comprehensive mana- 
gerial capability over the graphical system for the human 
user. I t  further provides an interface between any program 
and the graphical system, so that  human and program can 
interact easily. The interface is designed to present as 
nearly as possible the same interface structure to the pro- 
gram as to the human, i.e. to be a "symmetr ic"  interface. 
Each action of the program is a routine call and corre- 
sponds to a manual action available to the human. 

The design of this monitor has provided a study of de- 
sign of a graphic software system given the constraints of 
the existing hardware and given the existing computer. 

In  Section 2, we describe the graphical hardware; in 
Section 3, the characteristics of the G-21, both software 
and hardware; in Section 4, the conception and design of 
the scope monitor and the human interface; in Section 5, 
the interface to user programs and interaction of human 
with program; in Section 6, a transient swapping version 
of the monitor; and in Section 7, the provision for user 
submonitors. 

2. G r a p h i c s  H a r d w a r e  

The hardware used in the system under discussion has 
been described in [1] by J. T. Quatse and also in various 
Philco documents [2], and in the Computer Display Review 
[3]. Characteristics and properties of the hardware system 
are briefly set forth here, mainly insofar as they are rele- 
vant  to the design of the software. The scopes, Philco 
512's (Figure 1), were designed primarily for on-line work. 
The system consists of a controller (scanner) and three 
scopes. They  have character and straight line ("vector")  
generation. There are 256 characters which can be dis- 
played in three sizes. Vectors can be drawn with any 
length on a raster of 1024 X 1024 on a 10" X 10" screen. 
The display material is held in an 8K buffer of 32-bit words 
which is addressable by the G-21 central processor. Each 
vector is represented by one word, and a composite figure 
is represented by a string of vector words in successive 
locations. The  first word in the series, called a "header,"  
refers to absolute coordinates on the screen and serves 
merely to initiate the vector string. The rest of the vector 
words give increments AX, AY by which the beam is 
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moved, with a bit to indicate whether visible or invisible. 
No absolutely referenced vector strings are possible. 
Character strings consist of a header giving the starting 
screen coordinates o~ the string and then a series of charac- 
ter words, each containing three characters. Character 
strings are automatically formatted on the screen by the 
hardware. A new line is automatically started when the 
string reaches the edge of the screen or user set margins. 
Margins are represented simply as characters and are 
members of the string. Both  vectors and characters have 
an extra tag bit which causes them to blink or intensify if 
the blink or intensify manual switches are set. The scope 
is manipulated manually by using several devices. First  
there is a set of manual switches (the "state switches"), 
32 in all, constituting the state word. By appropriate set- 
tings the human can initiate the entry of vectors using 
cursor control switches or the Rand tablet, and the entry 
of characters from the keyboards. The modified Rand 
tablet  controller allows continuous entry of vectors into 
the buffer giving curve drawing by hardware alone [13] 
(shown in Figure 1). There is also a lightpen, for pointing 
only. There are automatic off-line facilities provided by the 
scope hardware for inserting new material in the middle of 
existing strings, deleting or correcting existing material. 
In  the buffer, the display material is arranged in blocks 
which are stored in sequence in the buffer with scanner 
controlling words directing the scanner in a regenerative 
path  around the buffer. Each scope can have up to four 
independent blocks of display material associated with it, 
called its "pages." Which pages are visible at a given 
time is controlled by  four of the state switches, one for 
each page. Each block of material has an identifying com- 
mand, called a "delimit," in front of it indicating on which 
page(s) of which scope(s) it is to be displayed (see Figure 
2). The manual entry of material into a page is controlled 
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Fro. 2. Schematic diagram of delimits, cycles, blocks, and stores 

by whether or not the page is visible and whether or not  it 
is enabled, i.e. whether an enable bit is set in the delimit 
word of the page. The new material is entered by the scope 
hardware and the blocks are arranged to extend as new 
material is entered, until  they hit against the delimit of the 
page next in the buffer. When this happens, an interrupt  
bit is set by the scanner. There is also a compare interrupt  
feature. To use this, a compare command is put  into a given 
block and designates a given character. When an instance 
of this character is next entered into this block, an inter- 
rupt  is generated. Also available are 20 manual interrupt  
buttons, so that  22 different types of interrupt  can be 
generated. These are distinguished by different bits in the 
(32-bit) interrupt word, which also has room for a copy of 
the compare character in the case of a compare interrupt,  
since compares can be set for several different characters in 
the same block. 

In  addition to the state word and the interrupt  word 
there is associated with each scope a position word. This 
contains the current X, Y screen coordinates of the cursor 
and also the current settings [0, 63] of two "analog knobs." 
The  latter give the ability for the communication of quasi- 
continuous information from human to program. 

These three words for each scope occupy fixed (address- 
able) locations at the beginning of the buffer. There  are 
actually two sets of these words for each scope, each set 
corresponding to a mode, which can be "normal"  or 
"al ternate ."  This doubling up of all words and consequent 
multiplication of the different types of block designation 
turns out to be useful. Among other addressable registers 
we mention the location register of the regeneration cir- 
cuitry, i.e. the location currently being scanned and dis- 
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played by the hardware. Using this, it is possible to tell 
where the scanner is and also to be able to reset it and to 
trap it, using software. The scanner cycles about once 
every 1/60 second, and when about 100010 words of display 
material are scanned, flicker is noticeable but  not in- 
tolerable. 

3. G - 2 1  H a r d w a r e  a n d  S o f t w a r e  

As shown in Figure 3, the G-21 is a 64K, 32-bit, com- 
puter with two Central Processors (CPs). The CPs each 
address a separate 20Ks of core and also the rest of the 
(shared) core, usually addressing as shown, but  different 
schemes are possible and can be switched by the operator. 
There is a resident monitor which services about 50 tele- 
types and schedules a card and teletype batch queue. A 
user program is loaded into one of the two 25K slots and 
runs to completion, with all printer output  going through 
the single accumulator. There is a large filing system on 
two disks and an RCA race unit;  most programs are stored 
on personal files and merely called in by a short card or 
teletype job. References to files are managed by the 
monitor. All I /O  from programs to the disk, race file, or 
magnetic tape are handled by the monitor. As shown in the 
diagram, the monitor is in three parts, two identical parts 
(one for each CP) and a third shared part.  This shared par t  
handles shared facilities like I /O,  e.g. disk routines, and 
each CP can call upon these routines in the central section. 
In  the case of conflicts, one CP waits for the other to finish 
with the disk routines. 

The files in the system are divided into 30 classes or 
" types ."  The physical placement of these files is handled by 
the monitor, and the user only refers to a given type and 
gives the record number within that  type. Different types 
may have different record lengths. All the user card image 
files are within one type, and there is a separate directory 

system and file manipulation language ("AND") for these, 
on top of the monitor facilities. AND is not conversational; 
AND programs for manipulating files and running pro- 
grams from files are themselves run as batch jobs. 

The monitor services teletypes by obeying a small con- 
trol language (each sentence of which starts with the key- 
word $ = ) which enables the human to setup his program 
as a teletype "input  file" on the disk. Thus each remote 
has a single input file containing a program. By  another 
command the program is given a submission time, and the 
set of submission times constitutes the teletype queue. 
The monitor schedules by simply taking the lowest sub- 
mission time. Associated with each remote is also an "out-  
put  file" of length 200 cards; a user program can output  
material into this file, each card giving one line which can 
be inspected from the teletype using the $ = language. 

From each remote, only one program at once can be in 
the queue; a new program can be submitted only after the 
previous program has run. Thus, when using a teletype, 
the user has to submit his program and then wait until it 
runs. The maximum allowed execution time is 6 minutes 
(this is a 6 ~sec machine) and this turns out to take about 
12 minutes of real-time to run. The wait-time (i.e. turn- 
around-time) is usually about 60 minutes. All compilers 
produce nonrelocatable code to run in either a 25K slot or 
two 25K slots; so an ALGOL program, say, can occupy 
almost the entire 64K of core. 

The interface between the user program and the monitor 
is structured into a fixed set of routines and locations which 
are used in the standard ways, and this is the only per- 
mitted means of interaction. These routines and locations 
are also given the same names (always of the form[ n) 
in all systems and languages that  can access them. 

Interrupts  of the CPs are handled by an interrupt word 
for each CP and all interrupts from the scopes set the same 
bit in one interrupt word. The scope monitor can be exe- 
cuted by either CP, chosen by manual switch settings at 
the G-21 operator's console. The scope buttons will then 
set the interrupt bit on the appropriate CP. Discrimina- 
tion between scope interrupts is effected by their different 
settings in the scope interrupt words in the display buffer. 
The display buffer is a switchable 8K module which re- 
places a regular core module when bits in a certain G-21 
hardware ("status") register are set. Thus a given G-21 
machine command referring to an address in [160000s, 
177777s] with one setting of the status register refers to 
one core box and on the other setting another core box. 
The status register can be set by a machine command. 
Thus a program can use the entire 64K of regular core 
including addresses 160000s, etc., and can also use the 
display buffer (also with addresses 160000s, etc.) by 
switching it in as needed, using the status register. A pro- 
gram can switch in the display module and use ordinary 
machine commands to set up or read display material. The  
accessing of the display buffer by the G-21 CP and by the 
scope scanner is interleaved if there are any conflicts. 
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4. Design of the Scope Monitor 

Given the graphic hardware and the G-21 hardware and 
software, software for graphics had to be designed with 
several purposes in mind. It  was desirable to use the scopes 
for graphical activities, like drawing essentially independ- 
ent of the CPU. Without software support, the manage- 
ment of the buffer entirely off-line can be laboriously 
effected using hardware switches on the controller; so 
software aid was needed. This would presumably be sup- 
plied by resident code and requested by interrupt. 

Also wanted was the capability of saving display mate- 
rial on files and using the scopes as teletypes for submitting 
programs into the batch queue. Arrangements for user 
programs interacting with the scopes were also desired. 

I t  was decided to implement a monitor program aux- 
iliary to the main monitor, and, in the initial design, resi- 
dent in the actual display buffer. Thus the display buffer 
would contain code and display material. The code would 
contain entry points, and control would be passed to it 
from the main monitor when a scope interrupt was de- 
tected. Requests to the scope monitor would be made by 
the human, usually by interrupt button, and the func- 
tions available for request would include management of 
the display area, saving of display material on files, sub- 
mission of programs, etc. The scope monitor would service 
the three scopes individually and simultaneously. The 
scope monitor would also respond to requests from a user 
program, and thereby provide an interface between a 
human and a user program. 

ORGANIZATION OF REQUESTS. The scope monitor is 
structured as an interrupt service routine (ISR) with a 
fixed entry point and, corresponding to the many actions 
performable by it, a set of routines referenced through 
tables in a data area. The requests are organized into sets 
of 10 or so, there being 20 interrupt buttons, and the con- 
cept of state introduced. In a given state, the interrupts 
have certain meanings specific to that state. The meanings 
are indicated to the human user by explanatory (system) 
displays, like menus (Figures 5, 6, 9, 10). In every state, 
interrupt number 1 causes the system display to be visible 
or invisible. The change from one state to another is 
effected by interrupt, and as there are only six states 
implemented, this is accomplished by defining an option 
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state the meaning of whose interrupts is to select a given 
state (see Figure 4). Interrupt number 0 in any state 
returns one to the option state (see Figure 5). Thus the 
monitor keeps a counter indicating which state it is in, 
and associated with each state, a table of routine entry 
points to be entered upon interrupt. The interrupts are 
organized into two priorities: (1) interrupt 0 and memory- 
full and compare interrupts, given high priority and called 
"immediate interrupts"; (2) all others, called "regular 
interrupts." 

ORGANIZATION OF THE DISPLAY SPACE. The core not 
occupied by code is organized into an available display 
space, with fixed size blocks of length 16010 words, initially 
as one "glob." In addition, copies of the system display 
messages are resident and part of the data area. Thus the 
regeneration cycle executed by the scanner goes through 
the system messages and then jumps to the regular display 
space. System pages can be made visible or invisible to any 
combination of the three scopes by setting appropriate bits 
in their corresponding delimit words. 

The user can request display space to be reserved for a 
given page by asking for a certain number of blocks. He 
can also delete any of his pages and can enable or disenable 
any of them for manual entry. All user pages are in normal 
mode, and the system pages are disenabled and in alternate 
mode. The monitor keeps tables of space allocations and a 
table of available "globs"; no repacking is performed. In 
addition to space used for user pages, the scope monitor 
uses globs of core for working areas, not always display 
material, and these it obtains from and returns to the 
display space. 

Requests involving core space and disk files are made in 
the management state (Figure 6). Note that the reorgani- 
zation of the display space by the scope monitor can in 
certain cases present a malformed regeneration path to the 
scanner. By being able to address the register containing 
the working location of the scanner, the scope monitor 
can trap the scanner momentarily while it alters the buffer. 

LOG IN LOGOUT 

"--~-~ OPTION STATE 

T 
INTERRUPT ZERO IN ALL STATES 

Fie. 5. State hierarchy 
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INPUT OF PARAMETERS FOR REQUESTS. M a n y  of t he  
requests have parameters which are typed in from the 
keyboard. This is achieved by having three small display 
blocks in the data area and in the regeneration cycle as 
input buffers for the three scopes. When input from a given 
scope is required, all other display blocks for tha t  scope 
are temporarily disenabled by altering the delimit bits 
and are made invisible by  altering the page switches in the 
state word, and the input buffer is enabled as a page. I t  
actually is designated as Page 1, but  this cannot conflict 
with the user's own Page 1. The cursor is also appropri- 
ately set, over the system message, by setting the cursor 
position par t  of the position word. Thus the user sees the 

MANAGEMENT PAGE 

PRESS INTERRUPT NUMBER 

2. SAVE PAGE AS SCOPE FILE 

3. READ IN SCOPE FILE AS PAGE 

4. APPEND PAGE TO PAGE 

5. DISPLAY DIRECTORY OF SCOPE FILES 

G. GET BLOCKS FOR PAGE 

?. ENABLE PAGE 

8. DISENABLE PAGE 

9. DELETE PAGE 

I0. CREATE BLOCKS FOR SCOPE FiLE 

I I .  SETUP AND FILE FOR TEXT EDITING USER SHEET TAPE 

12. PUTBACK AND FILE FROM TEXT EDITING USER TAPE 

FIG. 6. Management page 

system display with a gap for a parameter  and the cursor, 
but  the cursor is actually par t  of the input buffer, another 
display block in the display memory. The user then types 
in characters, apparently filling in the space in the menu, 
like filling in a form. However the form itself is unaltered, 
and the characters go into the input buffer page. 

In  the buffer, a compare instruction is set for the return 
character, and when the user has typed in the characters 
he enters a return character which triggers the scope 
monitor to process the input information and return dis- 
play conditions to normal. The memory-full interrupt 's  
meaning during this time is set to go to the same entry 
point as the compare interrupt, in case the buffer is filled 
accidentally. 

THE DISK. To save pictures on files, each scope user 
is allocated 20 files of indefinite length; each file can hold 
one picture only. The transfer of a given page to a given 
file and vice versa is requested by interrupt. The scopes are 
allotted disk space in the G-21 system and the scope moni- 
tor  manages it; however, all disk transfers are effected by 
having the scope monitor pass a request to the main 
monitor giving the relative addresser type  and record 
number. The disk available space with the allotment is 
managed on a glob basis with blocks of size 16010 words 
and with an available glob list, with no repacking. The  
user can request a display of a directory of his files. 

The request to the main monitor for a disk transfer is 

made on the same basis as the sharing of common routines 
by the main monitors on the two CPs, viz a binary switch 
is checked, and if set, the scope monitor "waits" until it 
becomes clear, before entering the communal disk routine. 

WAITING AND THE STACKS. Many  requests involve the 
execution of a set of routines in the middle of which we 
may have to wait, either for the disk routines to become 
available or for the human to type in a parameter.  The 
wait-times may be on the order of many seconds, and we 
want to be able to process other interrupts during this 
time including those for requests from other scopes in- 
volving waiting. This is arranged as follows (see Figures 7 
and 8). All variables local to routines are put  in a stack, 
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Fie .  7. ISR flowchart 

and there is a separate stack for each scope. Thus data, 
which needs to be set up and used later after a wait during 
which the same routine is executed but  at the request of 
another scope, will be safe. Next,  whenever we reach a 
point in the code which potentially could cause a wait, we 
merely set up an internal request to do the operation and 
then return to the ISR, look for other requests to satisfy, 
and if none, return to the main monitor. In  the ISR, we 
find the internal request and see if we can carry it out 
immediately; if not, we leave it alone, and next t ime 
through, t ry  again. In  addition to the manually generated 
interrupts, the scopes also receive clock interrupts, one 
per second. This is not frequent enough to allow us to 
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dispense with manual interrupts. The typical response 
time is negligible; whereas, when based on clock interrupts 
only, the response is sluggish and the whole rhythm of 
human interaction is different. 

When the internal request is completed, we return to 
the point in the code execution where the request was set 
up and continue. The disk requests are completed by the 
disk routines becoming available, control being trans- 
ferred to them and then returning. The manual type in 
requests are completed by triggering either a compare or 
a memory-full interrupt. In  this case, control from the ISR 
is passed to a routine set up during the request. 

The  return to the ISR during an internal request is 
effected by setting a global return location, since control 
can return to and leave from the ISR at any of a number 
of points. The ISR is divided into a number of sections, 
each of which has a return location which is set as the 
global return location upon entry into the section. The 
execution location at which the internal request was ini- 
t ia ted can be found from the stack, since all routine return 
locations are also stored in the stack. The stack increment 
is also stored in the stack, since it is different for different 
routines. 

Finally, at the end of the total  request, which may have 
involved several waits, control is passed to an exit routine 
which cleans up and returns control to the ISR. 

CONTINUOVS OPERATIONS. There is also general pro- 
vision for continuous operations, which are routines not 
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involving waiting but  are executed every time control 
passes through the ISR, i.e. roughly once per second. An 
example of this is the continuously generated core dump in 
the debug state, Figure 9. 

T~IE DEBUG STATE. This provides requests for patch- 
ing the core and doing a routine transfer (the "TRIM" in 
Figure 9) as well as the continuous core dump, which can 
show any par t  of the entire core, and in fact one can watch 
the execution of programs on the other CP! 

RECOVERY AND ERRORS. The scope monitor may ac- 
quire working space for use while it is in a state. In  this 
case, it sets a "s ta te  removal routine," so that  the process 
of changing state involves first executing the currently set 
state removal routine. During an interrupt  request, rou- 
tines may also get working space. All working space is 
referenced in fixed working tables, and its removal is per- 
formed by the global exit routine. In  the case where the 
user makes one request involving a wait and then changes 
his mind before the completion of the request by making a 
further and more immediate request, the scope monitor 
has to find out what  had been reserved and then delete it. 
This is always possible due to referencing the space in a 
standard way and knowing that  any space referenced 
from there must be removed at the end of a request or 
during a change of request. In  the case of errors, a similar 
clean up is done. 

A small number of error messages is used for display to 
the user. Errors fall into the categories of (1) unacceptable 
requests, (2) undefined requests, (3) overflow of space re- 
quirements, (4) facilities not yet  implemented or tempo- 
rarily out of system, (5) "impossible" system errors. 

SUBMISSION OF PROGRAMS. The scope can be used as a 
teletype. In ter rupt  requests are provided in the program 
state (Figure 10). To submit programs into the teletype 
queue, the program is typed onto a display page and then 
an interrupt  request takes this material and converts it to 
G-21 characters, formats it as card images, and places it in 
a teletype inputfile on the disk corresponding to the scope. 
Thus each scope is allotted a remote number in the G-21 
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PROGRAM PAGE 

PRESS INTERRUPT NUMBER 

2. CONVERT PAGE AND MOVE 

3. MOVE PAGE (UNCONVERTED) 

4. SUBMIT INPUT FILE ~ TIME PAGES 

5. DISPLAY INPUT FILE AS PAGE 

B. DISPLAY OUTPUT FILE AS PAGE 

7. FORWARD TEN LINES 

B. BACK TEN LINES 

9. LOAD MONITOR MODULE OF USER 

IO. TRANSFER TO ENTRY POINT OF MODULE OF 

I I ,  RELEASE MODULE OF USER 

lB. ALLOW PROGRAM FROM SCOPE TO INTERACT 

F:G. 10. Program page 

TO INPUT FILE 

TO INPUT FILE 

SYSTEM 

USER 

system and provided with input and output  files on the 
disk, along with all those for other remotes, within a rela- 
tive addresser type reserved for tha t  purpose. The action 
of placing this program in the queue is performed by  a 
separate request, which takes a parameter  and automati- 
cally sets up the correct job card as well as notifying the 
main monitor of the submission time. 

Because the user wants to interact with his program at 
run-time, we did not want the usual wait-time for tele- 
types. We solved this problem by making the scope pro- 
grams have priori ty--giving them an artificially low sub- 
mission time, so that  a scope program when submitted is 
at the top of the queue. The user then only has to wait for 
the currently running program to terminate, about 6 min- 
utes on average. So that  this priority is not unfair to tele- 
type users, since this is not a dedicated machine but  a 
general machine serving the entire user community, further 
submissions from the same scope are prevented (a request 
would elicit an error message) until a t ime had elapsed 
equal to that  which a teletype user would have had to wait. 

The perusal of input and output  files, each with 200 card 
images, is effected by requests to select the file, placing 5 
blocks (about 30 lines) from the file on a display page and 
then pressing a but ton interrupt for forward and backward 
motion of 1 block, which is about 6 lines. Pressing the 
but ton causes the test to be replaced by the updated 
sample of the file, giving the impression of "roll round." 
The request, involving one disk access, takes about half a 
second. 

TRACING THE MONITOR. To find some of the harder 
bugs, we have switchable trace printing into the scope 
monitor. This is a tricky operation, since the code assumes 
that  it will not be interrupted during some segments of 
code and the interface between the main monitor and the 
scope monitor is very complicated and again assumes 
noninterruptibility at times. Of course, printing involves 
interruption. We get around this by (1) preventing the 
processing of more than one interrupt at once by the scope 
monitor and (2) making the printing be officially per- 
formed by a special user program; thus the scope monitor 
passes printing material to this program and triggers it and 
waits in an interruptible state until printing is completed. 

In  this way we are able to obtain comprehensive printing 
of the action of the scope monitor, and, during debugging, 
this is a great asset. 

5.  U s e r  P r o g r a m  I n t e r a c t i o n  

Having supplied a comprehensive set of requests for the 
human user, activated manually, we then provide a very 
similar set of requests for any user program running on the 
G-21. This is achieved by an interface of entry points to 
routines called, in all available languages, "B-routines." 
All interaction with the scopes by a user program is re- 
stricted to calls upon these routines. A list of B-routines 
and their meanings is given in Figure 11. Display material 
is handled by setting up the material in a block in the 
user program data area and, by means of a B-routine call, 
requesting that  it be moved to a designated page of a 
designated scope and vice versa. Note that  neither the 
program nor the human use delimits; they just work with 
display material--headers,  vectors, etc. The delimits are 
handled by the scope monitor as part  of its management of 
the display area. 

Conversions between the scope character set and the 
G-21 character set are provided. By means of the interface 
(Figure 12), the program can do anything a human can do. 
Eight of the switches are not used by the scope hardware 
and are for use in human program interaction. 

We have the following means for human program inter- 
action: 

(i) By 
(a) 
(b) 

(ii) By  
(a) 

(b) 
(c) 

mutual display. 
Each displays text to be read by the other. 
Each displays a general display of lines and 
text. 
means of hardware attachments. 
Analog knobs set by human and read by pro- 
gram. 
Cursor can be set and read by  both. 
The eight switches can be set and read by both. 

B ROUTINES 

B(- I ) .  ANNOUNCE USER PROGRAM TO SCOPES. 

B(O)AND B(I). CONVERT CHARACTERS TO AND FROM DISPLAY FORMAT. 

B(2) AND B(3), MOVE CHARACTERS AND VECTORS TO DISPLAY REGION. 

B(4)AND B(5) .MOVE DISPLAY REGION INTO PROGRAM ARRAY. 

B(6)AND B(7). READ AND SET THE CURSOR. 

B(B) ,B( IO) ,B( I I ) .READ KNOBS, READ SWITCHES AND SET SWITCHES. 

B(12),B(I$),B(21),B(22).SET COMPARE CHARACTER, DEFINE COMPARE 

ROUTINE, REMOVE COMPARE CHARACTER, RESET COMPARE ROUTINE. 

B(I4)= B(23).  SET MEMORY-FULL ROUTINE AND RESET. 

B(15), B(16), B(17), B(18), B(19), B(20),  B (BB). GET DISPLAY SPACE FOR A 

PAGE, ENABLE THE PAGE, DISENABLE THE PAGE, DELETE THE 

SPACE FOR THE PAGE, DISENABLE ALL PAGES, CLEAR A PAGE. 

B(24) .  SET COMPARE CHARACTER, COMPARE ROUTINE AND SET 

CURSOR TO RECEIVE STRING. 

B(25) .DEFINE BUTTON INTERRUPTS. 

B (26). DISPLAY GIVEN PAGE ON ANOTHER SCOPE. 

B(42) .  DECLARE "AND" FILES AS SUBSYSTEM FILES.  

B ( 4 3 ) .  RETURN CONTROL AFTER INTERRUPT. 

FIG. 11. List of B-routines 

'Volume 12 / Number  11 / November,  1969 C o m m u n i c a t i o n s  of  the  ACM 601 



In  addition, we have program-defined interrupt entry 
points: 

(iii) (a) Compare interrupt on a certain (set of) charac- 
ter(s) on a certain page 

(b) Memory-full  interrupt  
(e) But ton  interrupts 1-19. 

The interrupt  entry points are defined by  a B-routine call. 
The  scope monitor is pu t  into a state, called the "user pro- 
gram interaction state." In  this state, the meanings of the 
interrupts are no longer given by  a "menu,"  but  will cause 
control to be transferred to the defined user program entry 
points. Thus the program has full freedom to use all inter- 
rupt  facilities and this gives fast response, interrupting 
being faster than checking a switch. One gets back to the 
option state by  interrupt  0 and can change freely back and 
forth between interaction with the user program and inter- 
action with the scope monitor. If  a program error occurs by 
an incorrect B-routine call, the human is notified by  an 
error display and the program is notified, also, by error 
switches and an error number. The processing of user inter- 
rupts in the scope monitor follows the normal classification 
procedure, but  since the settings of many monitor switches, 
e.g. memory protect,  are different for the user program 
than for the scope monitor and since we cannot rely on 
control returning to the scope monitor from the user pro- 
gram, we t reat  them differently. 

The  transfer of control to the user program interrupt  
entry point is delayed until all other processing "this time 
through" is completed. I t  is delayed until  we have reset 
all switches, and it  would normally return to the main 
monitor and often from there to the normal line control in 
the user program. At this time, we, instead, transfer con- 
trol to the interrupt  entry point in the user program. Con- 
trol can be returned to the scope monitor by the user pro- 
gram directly or by  a special B-routine call. This has the 
effect of returning control ult imately to the interrupted 

INSPECTION 
ENTRY 
POINTS 

~EQUEST 
ENTRY 
POINTS 

PROGRAM 

NTERRUPT " 

~ENTRY 
POINTS 

STORED 
V A R I A B L E S  

I 

N 
T 
E 
R 
F 
A 
C 
E 

DISPLAY I 
MATERIAL -- 

ENTRY AND 
RECEPTION 

OTHER 
HUMAN 

INSPECTIONS 

SYSTEM 

REQUESTS 

PROGRAM 
REQUESTS 

F~G. 12. Human program interface 

line of computation. Otherwise, the program continues in 
the new line of computation. 

We originally allowed different entry points for different 
interrupts; however, it was found more convenient to have 
one entry point in the user program and to pass informa- 
tion on the nature of the interrupts. This is done by 
declaration of communication locations to the scope 
monitor by the user program, by means of a B-routine. 

A location in the user program data  area is, for example, 
declared as the interrupt  number. Then,  when control is 
passed to the user interrupt  entry point, the interrupt  
number is placed in this agreed location by the scope 
monitor. Other communication locations are for the charac- 
ter  interrupting in a compare interrupt  and for the number 
of the scope interrupting in the case of multiscope inter- 
action. A further location is used as an interrupt control 
switch. When this is set the scope monitor will not pass 
control but  will keep looking, each time through the ISR, 
until  the switch becomes unset. User interrupts are not 
queued; a further  interrupt,  activated before the first is 
transferred, will cause the first to be replaced by  the 
second. 

The program can tell which scope it is interacting with, 
the one it has been submitted from, by examination of a 
register. I t  can interact with other scopes by setting this 
register to a different value and using the B-routines in the 
usual way. Such B-routine calls will have error exits unless 
permission to interact has been given by  the human at  the 
scope concerned. Permission can be given by  interrupt  
request. 

INTERACTIVE PROGRAMMING IN HIGH LEVEL LAN- 
GUAGES. The  user program interface can be incorporated 
as a package in any language, and we have incorporated it 
in ALGOL and Formula ALGOL. There  are a lot of problems 
in trying to interrupt  a program in these languages. We 
have "B-procedures" in ALGOL and Formula ALGOL and a 
package of procedures in these languages giving compre- 
hensive high level facilities. A further  experimental 
graphical language, GRASP [6], was developed by  Gene 
Thomas, writ ten in ALGOL and used either as a language 
processing system or an outer block to any ALGOL program. 
These interfaces are discussed in a further  paper [4]. 

SECURITY. Only allowed users are allowed to "log in"  
and nothing can be requested until a successful log in has 
been obtained. This is simply effected by  presenting the 
user with a log in message so that  he types in his user 
number. This is then checked against a file of allowed 
user numbers held on the disk in a master  directory. 
Upon leaving a scope, a user logs out. 

We also prevent  the user in the debug state from patch- 
ing anything other than his own program. 

As described above, the user can interact only with a 
program submitted by  himself unless given explicit per- 
mission by the other user. This is effected by making the 
program announce its presence to the scopes by  a call on a 
certain B-routine. Only after this call can other B-routines 
be called or the human put  the scope into the user program 
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interaction state for user interrupt processing. The an- 
nouncement of the program causes switches to be set and 
these are cleared at the termination (either normal or ab- 
normal) of the user program, by the main monitor, which 
passes control to the scope monitor at this time. 

The main use to which the system is put is for indi- 
vidual users to develop interactive programs in high level 
languages for specific scientific and engineering problems. 
In Formula ALGOL, there is a program for graphically 
manipulating algebraic formulae in textbook format by 
F. R. A. Hopgood and a graphical inference system by 
L. S. Coles [9]. In  ALGOL, there is an interactive pattern 
recognition program [10], a computer-produced movie 
program, an interactive job-shop scheduling program [11], 
and an interactive oil drilling simulation program [12]. 
In assembly code, the G-21 Brooker-Morris system has 
been given an interactive graphic input-output capability. 

6. Trans i en t  Vers ion 

In a new version, close to completion, the scope monitor 
has been restructured as a small resident part ,~ 100010 
words and a set of relocatable modules of code (total size 
400010 words) which swap as required from the disk. This 
should allow a total display area of ~ 700010 words, which 
is much more than the scanner can scan without bad 
flicker. Resident are the data area of the scope monitor, 
the composite ISR, and the swapping routines. All the 
rest of the code for carrying out requests and also the sys- 
tem messages are transient. The transient code is organized 
into groups of routines, which are treated as swappable 
units. Each such "module" has a number of entry points in 
standard locations relative to the first word, and all refer- 
ences between modules must be by means of a transfer to 
a given entry point number. The available space is shared 
then by display pages, system code, system messages, and 
temporary working data, all of which are organized as 
blocks with a leading delimit. In the ease of nondisplay 
material the second word is a zero, so that the display 
scanner simply jumps around the block. 

When a module is swapped in, it is relocated by altering 
the actual code by a simple relocation algorithm, since the 
machine does not have base registers. Modules are never 
swapped out; they are overwritten when the space is 
needed. "Retention bits" can be set, so that the space is 
not released, making the module resident until the bits 
are unset. In this way code can be continually swapped 
but data retained. We minimize the number of swaps by 
blocking related routines together, and also we leave the 
module in position until the space is actually needed for 
something else. Modules of code are shared by all three 
scopes and can be retained and released by any combina- 
tion of the three scopes without confusion. 

Modules are assembled by a system of macros in the 
assembler, SPITE. This flags words which will need modifi- 
cation for relocation at run-time. Using an auxiliary "scope 
module assembly package," the modules are assembled 
and dumped onto disk files at assembly time, and the disk 
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locations are automatically assembled into a table in the 
resident scope monitor data area. References by modules 
to locations in the resident part are assembled by using 
the symbol table of the resident part at assembly time. 

7. User S u b m o n i t o r s  

The package of macros and routines for assembling the 
transient version and the swapping system can be used by 
any user to produce a "submonitor." This can consist of an 
indefinite number oi modules, just like the scope monitor 
itself. The initiation of requests to such systems is by in- 
terrupt and there are currently three interrupt specifica- 
tions for this purpose provided in the program state 
(Figure 10). User submonitors interface with the facilities 
of the scope monitor by using the B-routines. They have a 
slightly different way of calling these routines and of ad- 
dress checking, and error recovery had to be generalized to 
deal with this case. 

Reentrant modules use the scope monitor's stacks for 
storage of local variables; this is arranged by the macros. 
Modules can call each other recursively, and this is kept 
track of by counters in the head of the module. A module 
can be called reeursively to a depth of 32, and it can be 
called by all three scopes simultaneously and independ- 
ently before overflow of this counter occurs. I t  is also 
possible for a call of a routine by one scope to have an 
error exit and to clear the counter, etc., without disturbing 
simultaneous cMls on the same routine by the other scopes. 

Before these facilities were developed, M. Coleman 
wrote a text editing subsystem [5]. This is a block of non- 
relocatable code which swaps into a fixed position. I t  pro- 
vides a comprehensive set of text-editing facilities acti- 
vated by interrupts or by hand drawn proofreader's 
symbols, which it can recognize. The text is swapped on 
and off a page from a special region of the disk. To move 
text to and from "AND" files and this editing area, 
auxiliary G-21 programs are automatically submitted by 
the scope monitor (they do not disturb the wait-time for 
submission of programs) upon interrupt request by the 
human. The main reason for this is to obtain permission to 
access the AND files, from the main monitor, which in- 
volves an elaborate checkout procedure. The text editor 
is now an established part of the graphics system; it corre- 
sponds to a special text-editing state. 

8. C o n c l u s i o n  

After an initial design phase of six man-months, the 
scope monitor was started in June 1966, and two men 
worked on it for three months and released an initial ver- 
sion with limited user program interface. Then one man 
worked (part-time) for a further year and fully debugged 
it, extended the user interface, and developed the transient 
version. He also produced complete user documentation 
[7] for the system. Thus, in only two man-years, we have 
produced a comprehensive graphical monitor, which pro- 
rides a workable and general interface for human/program 

(Continued on page 607) 
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tial locks appear to be unavoidable. The major difficulty 
associated with such primitives is tha t  if more than one of 
them operates in the data  base at the same time, a dead- 
lock is possible. One such primitive, however, may operate 
in parallel with other primitives using the two-step algo- 
r i thm without the possibility of deadlocks as long as the 
other primitives do not use essential locks. 

5. M o r e  C o m p l i c a t e d  L o c k i n g  P r o c e d u r e s  

Additional parallelism can be obtained in the data base 
if account is taken of the fact tha t  it  is often possible for 
several primitives to operate on a single node without 
interfering with each other. The most obvious example of 
this is primitives which do not modify information in a 
node. In  addition, it is often the case that  a primitive 
which changes a complete unit  of information in a single 
instruction can be executed simultaneously with one or 
more primitives which only read. Finally, it may be the 
case that  two primitives which modify the node operate 
on disjoint sets of information in the node, and so they can 
effectively be carried on at the same time. 

To accommodate this type of parallelism it is possible 
to associate a vector lock with each node such that  the i th  
coordinate of the vector corresponds to the i th  primitive 
type and represents the number of primitives of tha t  type 
currently operating on the node. In  addition, each primi- 
tive carries along with it one or more binary vectors 
corresponding to the different types of nodes it expects to 
encounter. The i th  bit of the latter vector, corresponding 
to a particular type of node, is 1, if the primitive carrying 

Bond, et al.--cont'd, from page 603 

interaction. The code occupies only 500010 words. These 
figures are somewhat below current estimates of space and 
time for a graphical system. We regard the system as 
essentially finished and stable at the present time. 

I t  is hoped that  we have shown in this paper how we 
designed and implemented the system, given the graphic 
hardware and the existing computer environment of a 
general purpose batch-processing machine with remote 
access. We tried to describe clearly the internal design of 
the monitor, the use of stacks and the design of the 
transient version. The  design of the user interface repre- 
sents a definite at t i tude to the problems of interactive 
software. 
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the vector cannot operate in a node of tha t  type  at  the 
same time as a primitive of type i. The  lock is tested by 
forming the dot product  of the node's vector lock and the  
appropriate binary vector associated with the primitive. 
If  the dot product  is zero then the node is unlocked for the 
primitive, which then increments the node's vector lock 
in the appropriate position and begins operating in the 
node. Since the testing and setting of a vector lock cannot 
be done in a single instruction, it may be necessary to  
associate a 1-bit lock with the vector lock to prevent  more 
than one primitive at a time from operating on the vector 
lock. 
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