AND

Alpha-Numeric Directory

AND . . . The AlphaNumeric Director System

The AND System provides the facility for storing and updating
symbolic records on the disk and magnetic tapes attached to the
Carnegie Tech G-21 computor. AND is useful for large programs ori-
ginating from punched cards, and for nearly all programs originating
from remote teletype stations. The AND system is both a general
librarian for storing files of alphanumeric text and a text editor

for altering that text.

I. Introduction

AND stores and modifies alphanumeric information which we will
call "text" in groups of 80 characters. Each 80 character group
corresponds to the contents of a standard 80-column card and will
be called a '"card image'. AND treats each card image of text as
a unit, never examining its contents (except the language field,
columns 1 and 2). Any alphanumeric information can be treated as
text by AND: for example, GATE, ALGOL, THAT, or IPL programs oOr
data.

AND stores text in the G-20's disc memory in logical groups
called "r:cords". Each AND record is filed under the usage number
of the programmer who creat:d it. There may be many different AND
records filed under any usage number, so each is distinguished by a
"file number", assigned by the programmer when he first creates the
record, File numbers may be used in any order and may be integers
between 0 and 127, for each usage number.

AND maintains a master Directory which is used to locate cur-
rent AND records. The Directory entry for each AND record contains
the number pair: (Usage Number, File Number) which distinguishes
the record, as well as the length and location of that record on
disc (or on tape). The programmer selects a particular record by
using the AND instructions "USER" and "FILE".

As an example of the use of AND, assume that a programmer needs
to debug a large ALGOL program and does not wish to run the entire
program deck through the card reader many times. His program and
possibly some test data must first be stored on disc as an AND record.
For this purpose he will prepare a card deck including: (1) text
of his program and (2] suitable AND instruction cards to store this
text into a new record under his usage number and a file number of
his choice. When the programmer subsequently finds errors in his
program, he can use AND to alter or delete any card images and in-
sert any new text he desires; the card deck for these changes will

contain only the AND instruction cards and the new text,

45

Any AND program can end with a RUN instruction; for example,
the instruction RUN , ALGOL, TAPE'" causes the ALGOL translator to
be loaded and executed, taking its card images from the AND infor-
mation on the disc rather than from the card reader.

AND is essential for running a program from a remote teletype,
since AND saves typing the entire program more than once. AND
operations are performed from a remote teletype just as from a card
deck, since the G-20 treats each line at a teletype as simply a card
image. Although this write-up will always refer to AND instructions
and text as if they originiated from a card deck, it should be under -
stood that each "card" could be a card image typed at a remote tele-
type, or the result of a previous AND run.

AND is called into operation by a job card which contains AND
as the system name, followed by cards containing AND instructiocns
and cards containing text. No card can contain both text and
AND instructions, since text is handled without ever looking at its
contents.

A programmer may use AND to take card images from any existing
AND record; however, AND will allow a programmer to create new
records only under his own man number, and will not let him change in

any way the contents of any other programm2r's AND records.

II. The Dump-Count

AND uses a temporary work area on disc called the AND "Scratch
Area". Under control of the instruction cards, AND collates into the
Scratch Area any desired combination of card images from existing AND
records with card images of new text. The text thus collated can be
copied from the Scratch Area back onto AND records on disc by a DUMF
instruction; the "dumped" text may replace an existing record or may
be assigned a new prégram number and become a new AND record. A RUN
instruction may cause any system to be loaded and executed as if
called from a job card, but with a monitor switch ([15)set to take
input either from the AND Scratch Area or directly from the AND record.

There is a counter, called the '"dump cpunter", associated with
every AND record. Each time a DUMP instruction writes information
onto an AND record, the associated dump counter is incremented by
one. The value of this counter, called the '"dump count”, is design-
ed to protect users against possible results of disc failures.

To access any ANC record, the user must specify the current
value of the dump count as well as the usage number and file number.
If he gives the wrong dump count, AND will print the correct dump
count and subsequently give an error when a DUMP is attempted. The
dump-count will never exceed 31 and will cycle between 1 and 31. A
program will have zero dump-count only when first created; thus, if
a program with dump-count 31 is DUMPed on, its dump=-count will be-
come 1,

We will explain the need for the dump count by an example. Let
us suppose that on Monday morning (as every morning) we copy the AND

record area of the disc onto an emergency backup tape. Monday after-

noon, the user makes extensive changes in his file and dumps it back

onto the same record. Monday night there is a serious disc failure .
which results in losing all the information from the disc. Our recov-
ery procedure will be to copy onto the disc the contents of the last
backup tape--the one created Monday morning. Suppose that Tuesday
afterncon the man again uses AND to modify his program. His AND deck
will contain serial numbers referring to his Monday afternoon DUMP;
if this deck is applied to the file which is now on the disk (the
Monday morning version), chaos will result.

The dump count provides an automatic mechanism for preventing
this chaos. Since the user has done a DUMP onto the record after the
backup tape was created, his Dump Count will not agree with the dump
count attached to the record now on the disc, and his program will
be faulted on Tuesday afternoon. If, on the other hand, the record
has not been changed since Monday, then the dump count will not have

changed and the disc failure will be irrelevant to the user.

III. AND Editing Operations

AND attaches four-digit sequential line numbers,or 'serial
numbers", to the card images which it collates into the Scratch Area.
When (or if) these card images are subsequently copied back into an
AND record, the new serial numbers are copied also. Every card image
in AND records and in the Scratch Area has an associated serial number;
the first image in a record always has serial number 1. Whenever the
card images are printed, either by AND or by another system which
takes its input from AND, a serial number is printed to the right of
each card image as if it were in colums 81 to 84 of the card. .

The serial numbering for AND card images will give unique

serial numbers up to card 41999. This system is as follows:

CARD NUMBER WILL PRINT AS
Do v 9999 0000...9999
10000...10999 0000, ..,999
11000...11999 A000...A999

36000...36999 Z000...2999

CARD NUMBER WILL PRINT AS

37000...37999 1000...1999
38000...38999 £000,..999
35000...39999 000, ., .5999
40000, ..4999% —000, ., ,+999
41000, ..41999 ,000,.,.,999
42000, ..42999 0ooo, ., ,9999
Ete. Ete.

To explain the operation of the various AND editing instruc-
tions, we will use two pointers,§ and o.

& is the record pointer, whose value is the serial number

of the card image which is to be moved next intc the scratch

area, b refers to the AND record most recently selected by

USFR and FILE instructioms. A

5 is the scratch area pointer, whose value is the new serial
number which will be assigned to the next card image entered
into the scratch area. As each card image is entered into the
scratch area,c is always increased by 1.

The basic text manipulation operation of AND simply moves card
image number § from the current AND record into the Scratch Area to
become image o, attaches the new serial number o to the image in
Scratch, and finally steps bothé ando by 1. The AND collation
instructions iterate this operation to move blocks of images into
the Scratch Area. The collation instructions also generally reset
§ to delete, alter, and rearrange images as desired.

Each card image of new text is simply moved into the Scratch Area,
as the next image and assigned the new serial number g; then ¢
is stepped by 1.

The pointer ¢ can be reset to 1, "clearing" the Scratch Area,
so that multiple collations can be performed during a single AND
run.

AND can be instructed ("PRINT ALL") to print each card image
as it is entered into the Scratch Area; in this case, the new serial

number ¢ is printed beside each image.

49

IV. Detailed Explanation of AND Instructions

A. General Form of AND Instruction Cards.

1. Columns 1, 2 (the "language field") may contain "AN"
or be blank.

2, Columns 3-80 may contain any number of instructions,
separated by semicolons. Blank columns are completely
ignored.

3. Each instruction must be entirely on a single card.

4. Comment convention: AND ignores everything to the
right of a | ("bar") on a card. Thus every instruction
will be terminated by a semicolon, a |, or the end of
the card. Since the end of the card is a delimiter, the
last instruction on a card need not be followed by a

semicolon.

B. Basic AND Control Instructions
Before any instruction which refers to an AND record is
given, the particular record must be selected with the pair of in-
structions 'USER', 'FILE'
(1) ...USER <Usage Number>
<Usage Number> is punched just as on a job card
in the form <letter> <letter or digit> <2 digits>
<man number’> where <man number> ::= €2 letters> <2 digits>,
Set <usage number> of next AND record to be selected, .
and <File Number> undefined. Every AND run begins with
an implied USER Instruction:
USER <Usage Number on job card>
Thus, if you are using only your own records, you will

not need any USER instructions in your program,

Example:
$$ 2 10 AND PHO1 JPOI
AN FILE 62/1; RUN, ALGOL, TAPE;

(2) ...FILE <File Number> / <dump-count>

(a) <File Number> must be an integer between O and
127, inclusive.

<dump-count> must either be an integer equal
50

to the current dump-count of the record, or else
be the word: PERIL

(b) Using the <usdge number> specified by the most
recent USER instruction, FILE searches the AND
DIRECTORY for a record filed under

(<Usage Number> , <File Number>).
I1f such a record does not exist, AND creates
a Directory entry for it if the man number part
of <Usage Number> agrees with that on the Job
card.

(c) FILE sets fe 1.

(d) When selecting a different File Number with the
same Usage Number, it is not necessary to re-
peat the USER instruction before the new FILE
instruction.

(e) Each time a DUMP instruction is executed, the
dump-count associated with the AND record being
dumped into will be increased by 1. A newly-
created (and therefore empty) record has dump-
count 0. To access a record, the user will
generally need to supply the current dump-count
of the record in the FILE instruction.

Examples: FILE 2/3;
FILE 2/PERIL;

The user can access AND recerds "PeRILously" without supplying
the correct dump-count; however, AND will not permit him to DUMP
onto any AND record unless he has supplied correct numerical dump-
counts in all FILE instructions in the run.

AND will always print the correct dump-count whenever a DUMP
is executed and whenever the user dces not supply the correct dump-
count on a FILE instruction. The correct dump-count will be printed
in these circumstances regardless of the PRINT option. If the AND
program originated at a remote stationm, the dump count will be typed
out there even if no TTYPE instruction has been given.

A dump-count of the form: PERIL will allow a PURGE to be

51

performed. Normally the record to be purged will be obsolete be- .
cause it has been modified and dumped onto another, '"derived" record.
It is recommended that prior to the PURGE instruction the user exe-
cute a FILE instruction to select the derived record and check its
dump count,
(3) ... DUMP (No parameters)
DUMP <File Number> / <integer>
(a) DUMP writes the (o -1) card images which are
now in the AND Scratch Area onto the AND rec-
ord named by the most recent (USER, FILE)in-
struction pair. AND will fault the DUMP in-
struction if the Man Number of the record to
be written is not the same as the Man Number
on the job card. In other words, a pro-
grammer is permitted to dump ONLY onto his own
records.
(b) At the completion of the DUMP operation:
(x) The pointer o is unchanged, so that more
card images can be collated onto the end of
the Scratch Area:
(y) The pointer & has been reset to 1 and the

new record which has just been written is

selected.
(c) The DUMP writes an "End-of-File" image imme- .
diately after the last card image in the AND

record, This will act as an End-of-File signal
if a system which is taking its input from this
AND record subsequently attempts to read beyond
the end of legitimate information.

(d) AND has a feature to help save the programmer
from his own catastrophic errors, such as al-
tering the second image in a long record and
dumping back onto it without doing a GET TO §
instruction.

The user can create a directory entry for

52

file number O (zero) under his usage number,
by executing the instruction-

FILE 0/0 ;
Whenever he subsequently executes a DUMP onto
any of his other records (with file numbers
1, ... 127), the original copy of the rec-
ord will be S*A*V*EfD and will automatically
appear in his directory under file number 0.
At the same time, the message:

SAVED ON FILE O
will be printed. This action will not change
the duﬁp—count of file 0.

File 0 will behave otherwise as a normal
AND record. Thus, it can be selected, edited,
and explicitly dumped‘upon in the normal way.
Explicit dumps on FILE O will increment its
dump-count as if it were any other record, and
of course in this case the original copy can't
be saved on FILE 0, If FILE O is never
explicitly dumped upon, then it will always
have dump-count = 0.

If the programmer has no need or desire to
use the automatic save on FILE 0, he should
simply not create a directory entry with file
number 0, or purge the one he already has.

If there is sufficient available space to
dump a record but not sufficient to save the old
record on FILE O, AND will not save it, and will
inform the programmer of this with the message:

NO SAVE ON FILE O

It should be emphasized that while FILE O
will behave under normal AND operations like
records with numbers 1, ... 127, FILE O should
be regarded as wvolatile storage which has a life-

time of only a few days. As part of the regular

53

policing of AND storage which the Computation
Center has instituted, records under FILE O
which have not been altered for several days
(a minimum of 48 hours) will automatically be
returned to AND available space. This will be
done without changing the dump-count of FILE O,
(e) DUMP may have an optional parameter. See Sec-
tion G
(4) ... NO SAVE (no parameters)
The instruction NOSAVE will keep the contents of FILE O
safe over the next DUMP; that is, there will be no attempt
to save on FILE 0, the previous contents of the file be-
ing DUMPed on.
(5) ... RUN , <System Name>
RUN
RUN , <System Name> , Tape

<System Name> , Card

RUN , <Logical File Type>

RUN , <Logical File Type> , Card

RUN , <Logical File Type> , Tape

RUN , <System Name> , <Logical File Type>

RUN , <Logical File Type> , <Logical File Type>
(a) Writes an AND End-of-File image after the last

image in the Scratch Area.
(b) Terminates the AND run by loading and executing

the system specified by the first parameter.
Specifying a Logical File Type for the first parameter will cause

AND to load and execute the system corresponding to the Logical File
Type. (Sometime in the future, it will be possible for a user who
writes his own system to have it put on an AND record. When he
wishes to use the system as the <System Name> parameter to AND's
RUN instruction, AND will have the monitor execute the system as if
it were a job card callable system, e.g., ALGOL, GATE, IPLV., The
current monitor's system load routine does not have the ability to

load a system from a Logical File Type. When monitor is modified to

do this, an announcement will be made. Currently, any attempt to
54

use a Logical File Type as the first parameter to the RUN instruction

will cause an AND error).

(e)

<empty>:

, TAPE:

,<Logical File Type>:

The time and paper limits on the original

job card will be the total limits over

both the AND run and the system run which
follows.

The second parameter controls the setting of
the "Card-Read Switch" |15 in the Monitor, as
follows:

No change in previous setting of |15 (i.e. the
system to be run will take its images from the
same source from which AND has been taking its
instructions).

Set \ISe-O(take input from cards).(The Monitor
tape parameters will be set to point to the
currently selected AND record, so the running
system can take input from cards and then sub-
sequently change !lS to take input from this
AND record).

Ifg # 1 then |15 -1 (i.e., if preceding AND
run resulted in collating one or more card
images into AND Scratch Area, then set |15 to
take input from Scratch Area), else |15 «+1, and
set the Monitor tape parameters for current AND
record; (i.e., if preceding AND run included
only USER, FILE (and possibly PRINT) instruc-
tions, set Monitor tape parameters to take in-
put directly from the selected AND record) .
Note that "RESET 1" will setge 1 and will
force "RUN, <system>, TAPE" to take input di-
rectly from AND record.

Set switches to take input from the beginning of

the specified Logical File Type.

C. Collation Instructionms,

The following instructions collate card images of text from

55

the card reader, All instructions except TEXT require that a (USER, .
FILE) pair have been executed previously to select a record.

In describing the form and function of the AND instructions, we
will denote the numerical parameter values by letters n, p, q, and r,
and their form as punched into a card by [n], [p], [q}, and [r]. Thus,
if the form of an instruction is 'GET [n]’, then the value of the
parameter is n.

Finally, M will stand for the total number of card images, or
the maximum serial number, in the selected AND record, The End-of-
File image which AND automatically places at the end of each record
would be image (M+l); however, it cannot be collated by any AND
collation instruction.

The basic collation instructions will now be described.

(6) ... SET [n]
(a) Sets AND record pointer:
6 en
(b) Error unless: 1 = § = M+l where
M = maximum Serial Number in record.
(7) ... GET [n)
(a) Fetch n consecutive card images from the
selected AND record starting with current
Serial Number § ; write them into the

Scratch Area as the next n images with
Serial Numbersc, 0 + 1, ..., 0 +n -1. .
(b) The final effect of GET on the pointers is:

§e«8§+n;ocea+n

8 ..

GET TO [qJ
Fetch into the Scratch Area all images from the
current value of § up-to and including image number
g5 Liess

GET T0 (q) = GET [q -5 + 1]
The final effect of GET TO [q] on the pointer is:

ceo+(q-6+1); 6«q+1;

"GET TO $" is also allowed; it will fetch

56

(M - § + 1) images, from the current value of
to the end of the record, inclusive. Thus, the
single instruction GET TO § will fetch all

the rest of an AND record into the Scratch Area.

(9) ... TEXT (no parameter)
(a) TEXT reads the following cards as
input text, entering images
into the Scratch Area and
assigning consecutiye Serial

Numbers to it.

Only AN in language
field will terminate text; and,
the card which terminates the text

will be scanned for AND instructions.

The instructions SET, GET, GET TO, and TEXT
just described form a complete set of basic text
manipulating operations in AND; these instructions
are, however, generally too elementary for convenience
in actual editing programs. Therefore, AND contains
a set of collation macro-operations: LOAD, INSERT AFIER,
DELETE, ALTER, AND PUT, each of which is simply a
particular combination of the basic operations, The last

four macros are particularly convenient since they each per-

57

(10)

form one of the basic editing functions of : inserting
new text, and deleting, altering, and rearranging old
text; in addition, these forms are independent of other
editing macro operations which precede and follow them.
Thus, if only these four operations are used, it is
usually possible to change the AND program to include
new corrections by simply inserting the necessary colla-
tion instructions into the AND deck, without changing
any existing AND cards. These four all start with a
GET TO operation whose parameter must be non-negative;
this means that these operations must be executed in
order of increasing record serial numbers §.

The word TO 1is used as a parameter delimiter in
most of the macro collation instructions, as for exam-
ple:

DELETE 64 TO 67
TO 1is always used in the inclusive sense, so that this
instruction deletes 64,65, 66, and 67.

The symbol § can be used as one of the parametérs
to any of the macro instructions and stands for M, the
serial number of the last card image in the record. That
is, § 1is [M]. AND looks up M, the number of card
images in the record, in the Directory and uses its value
for §

The parameters for which § can be used are denoted
by q and r in the following.

LOAD [p] TO [q] = SET [p] ; GET TO [q]

LNAD [q] LOAD [gq] TO [q]

In either case, [q] may be § ; for example,
LOAD 63 TO § loads all card images from 63 to the
end of the record, inclusive.
Parameters to LOAD are listable in the following form:
LOAD [p] TO [q], [r] To [s]; = LOAD [p] T0 [q];
LOAD [r] TO [s];

(M - § + 1) images, from the current value of
to the end of the record, inclusive. Thus, the
single instruction GET TO § will fetch all

the rest of an AND record into the Scratch Area.

(9) ... TEXT (no parameter)
(a) TEXT reads the following cards as
input text, entering images
into the Scratch Area and
assigning consecutiye Serial

Numbers to it.

Only AN in language
field will terminate text; and,
the card which terminates the text

will be scanned for AND instructions.

The instructions SET, GET, GET TO, and TEXT
just described form a complete set of basic text
manipulating operations in AND; these instructions
are, however, generally too elementary for convenience
in actual editing programs. Therefore, AND contains
a set of collation macro-operations: LOAD, INSERT AFTIER,
DELETE, ALTER, AND PUT, each of which is simply a
particular combination of the basic operations. The last

four macros are particularly convenient since they each per-

57

(10)

form one of the basic editing functions of : inserting
new text, and deleting, altering, and rearranging old
text; in addition, these forms are independent of other
editing macro operations which precede and follow them.
Thus, if only these four operations are used, it is
usually possible to change the AND program to include
new corrections by simply inserting the necessary colla-
tion instructions into the AND deck, without changing
any existing AND cards. These four all start with a
GET TO operation whose parameter must be non-negative;
this means that these operations must be executed in
order of increasing record serial numbers 3.

The word TO 1is used as a parameter delimiter in
most of the macro collation instructions, as for exam-
ple:

DELETE 64 TO 67 ;
TO 1is always used in the inclusive sense, so that this
instruction deletes 64,65, 66, and 67.

The symbol § can be used as one of the parametérs
to any of the macro instructions and stands for M, the
serial number of the last card image in the record. That
is, § 1is [M]. AND loocks up M, the number of card
images in the record, in the Directory and uses its value
for $§

The parameters for which § can be used are denoted
by q and r in the following.

LOAD [p] TO [q] = SET [p] ; GET TO [q]

LOAD [q] = LOAD [q] TO [q]

In either case, [q] may be § ; for example,

LOAD 63 TO § loads all card images from 63 to the

Il

end of the record, inclusive.
Parameters to LOAD are listable in the following form:
LOAD [p] TO [q], [r] TO [s]; = LOAD [p] TO [q];
LOAD [r] TO [s];

€11) ... INSERT AFTER [q] = GET 10 [q] ; TEXT
Here [q] may be $
(12) ... pELETE (p) 10 [q] = GET 10 [p-1]) ; sET [q + 1]
DeLETE (q] peEte (o) 10 (g
In either case, [q] may be §

n

Parameters to DELETE are listable in the same
form as those for LOAD.
(13) ... aLrer (p] 10 [q) = pErErE (o] 10 (o) ; 1EXT
ALTER (q] DELETE [q] ; TEXT
That is, ALTER means a DELETE followed by a TEXT.

1]

The new text which follows can contain any number
of images, so that_ ALTER need not make a l-to-1
replacement of the deleted images. {qj may be
$
(14) ... 2ot [p) 10 (g arTER (o] =
¢er 10 (] ; Loap (p)_to (o] ; sET [r + 1]
2ur_[q) aFTER (o) = pur (o] 10 (o AFTER (X]

eur () 10 (o) = 2ot (o) to (o) aFTER [5-1]

Here either [q] or [r] can be ‘§ .
Parameters to PUT are listable in the same form
as those for_LOAD.

Example: to move images 64, ..., 67 to a
new place after image 119, use:
DELETE 64 TO 67
PUT 64 TO 67 AFTER 119 ;
which is equivalent to:
GET TO 63 ;E&B 4
GET TO 119; SET 64 ; GET TQ 67 ;
SET 120
Notice that PUT itself simply makes a copy of
the images without deleting them from their
original place.

D. Print Control Instructions

59

(15)

Normal

(16)

an

PRINT <Print Mode>
The PRINT Instruction may have any of the following
mnemonic parameters:
print mode Meaning

TEXT Print all card images which
are read from cards by a TEXT
instruction, as well
as all cards containing AND
instructions.

ALL Print all card images, both
existing images from records
and new text from cards, as
they are entered into the Scratch
Area. The AND instruction cards

are printed as well.

<Emp ty> Print only AND instructioms.
NO Suppress all printing.
SCRATCH List on the printer the entire

current Scratch Area contents,
leaving the pointers and the
regular print options unchanged.
Note that AND instruction cards will always be
printed unles PRINT NO turns off all printing. If
no PRINT instruction is given, AND assumes: PRINT
TEXT.
PAGE (no parameters)
Upspaces printer to new page.
TTYPE or TTY (no parameters)
Set the Monitor to deliver all images being printed
by the AND run (as determined by the PRINT instruc-
tion(s) on the remote station from which the
current AND run originated.
TTYPE will be ignored if the run did not come from
a remote teletype.

TTYPE [k] or TTY [k]

60

Same as TTYPE, except types out only the first k
columns of each printed card image on the remote
teletypes; here 0 = k = 66, The AND serial will be
typed out on the left of each card image, but will
continue to appear on the right side of the on-line
listing.
(18) ... NO TTYPE (no parameters)
Set the Monitor to deliver AND output images only
to the printer, not to the remote teletype. At the
beginning of every AND run, the Monitor will be in
the NO TTYPE state.
(19) ... PEEK <integer>
PEEK <empty>
The AND instruction
PEEK <integer> or PEEK <empty> (where <empty>
implies 47 (1 page full))
gives the user a simple way of reviewing all his AND records
so that he can purge (o; put into COLD STORAGE) those which are no
longer necessary.

PEEK will print out the first <integer> lines of each AND record
filed under his usage number. More exactly, it will print <integer>
or <NUMBER OF IMAGES IN RECORIX», whichever is smaller. Each program
will be listed starting on & new page.

PEEK will be most useful if you make a habit of placing comment
card images at the beginning of each AND record, telling when the
record was created, its parentage, and why it was created (if you
don't know why, then perhaps you should not be using AND record
space...). The form of these comments is determined by the comment
convention of the language whose text is stored in the record, of
course.

PEEK will not disturb the scratch area or the scratch pointer.
Following a PEEK, however, a new program instruction must be given to
access an AND record.

You will be allowed to PEEK only at your own records. If you

execute a USER instruction which selects a usage number different

61

from that on the job card, and then try to execute PEEK, you will get

an AND error message:

YOU ARE A PEEK-ING TOM.

E. Logical File Table Instructions

(20)

... FILE <file number> / <dump-count> (<intager>)

It is now possible to make entries in the monitor
Logical File Table from AND. If the FILE instruction or
the FILE <File Number> / <dump-count> instructicn is
followed by (<imteger>), the currently selected (USER,

FILE) pair will be defined as Logical File Type <integer>.

If the Man Number of the (USER, FILE) pair defined as
a Logical File Type does not agree with the Man Number
on the job card, a "read only" flag will be set for that
Logical File Type. Thus, ir file 17/3 of user MMO1PSO!
is desired to be Logical File Types 18 and 14, the
following AND instructions should be executed:

USER MMO1PSO1 ;

FILE 17/3 (18) ;

FILE (14) ;

If an AND record has been set up as a Logical File
Type and this record is DUMPed on or PURGEd during an
AND run, the Logical File Table will be altered corres-
pondingly. If a DUMP is executed on a record appearing
in the Logical File Table, the Logical File Type (s)
corresponding to that record will be updated, i.e., if
the AND block number and/or the length of the record is
changed, the Logical File Table will be altered. If a
PURGE is executed on a record appearing in the Logical
File Table, the Logical File Typeé(s) corresponding to
that record will be set undefined.

The Logical File Type must be less than 20 and great-
er than 1. When a RUN instruction is executed, Logical
File Type 1 is automatically set to the first unused
block of Scratch, that is, the first block following the

program or data in Scratch.

62

(21) ... CREATE <integer> BLOCKS
CREATE <integer> CARDS
CREATE <integer> BLOCXS FOR <file number> / <dump-
count>
CREATE <integer> CARDS FOR <file number> / <dump-
count>
CREATE can facilitate the creation of AND space for
use in connection with the monitor Logical File Table.
The parameter to CREATE is either:
<integer> CARDS, in which case a directory
entry of <integer> cards will
be created for the currently

selected (USER, FILE) pair,

<integer> BLOCKS, in which case a directory
entry of <integer> blocks will
be CREATEd, and the number of
card images will be set to the
maximum number for <integer>
number of blocks.

This instruction will not affect the scratch
pointer, but a semi-DUMP will occur, that is, everything
that DUMP does will occur except the actual scratch to
record dump. Only the 320-word block containing the
AND END-OF-FILE MARK, i.e., the last block, will be
written out. Another parameter may follow the required

<integer> CARDS or <integer> BLOCKS parameter.

EXAMPLE:
To create a directory entry of 400 cards, the
following instruction should be executed:
CREATE 400 CARDS;

To create a directory entry of 9 blocks, the

following instruction should be executed:

CREATE 9 BLOCKS;

F. Miscellaneous Instructions.
(22) ... AVAILABLE (no parameters) v
The instruction AVAILABLE pdints out the
total number of available blocks and the
greatest number of consecutive available
blocks, i.e., the greatest glob of avail-
able space. Thus, an execution of the in-
struction AVAILABLE will produce output
similar to the following:
1436 AVAILABLE BLOCKS
GREATEST GLOB IS 140
The instruction DIRECTORY will automatically
print the total number of available blocks
and the greatest glob. This allows the user
to make sure that a sufficiently large set of
consecutive AND blocks is available when he
wishes to DUMP a large set of images.
Each AND block holds 15.24 (or 2%%)images.
(23) ...BINARY (no parameters)
Sets a switch which inhibits attaching new serial
numbers to the images entered into the Scratch Area.
BINARY has two purposes:
(aJ AND can be used to store files of binary infor- .
mation created as output in the Sz=ratch Area by some
other system, Subsequently, an AND program can
fetch the binary information back into the Scratch
Area in the normal manner, in groups of 21 G-20
32-bit logical words. A BINARY instruction should
be given at the start of the AND program which
fetches the information back into SCRATCH so that
every 2lst word will not be clobbered by a new
serial number g.
(b) If a BINARY instruction is given before AND
instructions which edit normal alphabetic text, the

original serial numbers will be preserved in Scratch.

In particular, a card image fetched into the Scratch
64

(24)

Area from an AND record will have its original record
serial number attached; an image read by TEXT
will have a blank serial number. It is re-
commended that you do not do a DUMP of this information,
since the DUMPed record will not have correct con-
secutive serial numbers.
Every FILE instruction turns the BINARY switch
off,
COMPARE (no parameter)
COMPARE will perform an image-by-image comparison
of the images currently in the AND Scratch Area with
the images in the currently selected AND record,
checking for l-to-l identity of the images exclusive
of their serial numbers.
(a) The COMPARE operation always begins by comparing
the first image in scratch with the image at which §
is pointing.
(b) Each pair of images which are not identical will
be printed along with their respective serial numbers.
(c) The comparison will cease when any of the following
conditions is met:
(1) The last image currently in the
Scratch Area has been compared;
(2) The End-of-File ("$$") image in
the AND record is encountered; or
(3) More than ten pairs of images
have been found to be non-identical
and have been printed.
In any case, COMPARE will restore ¢ to its previous
value.,

The images which are not identical will be typed
at a remote station if the program originated there
even if no TTYPE instruction has been given, and will
be printed on-line regardless of the print option.

Lack of identity is not considered an AND error

and will not terminate the current run. Therefore,
65 ’

(25)

(26)

(27)

the instruction CHECK has been provided to allow the

user to make subsequent AND operations contingent
upon the identity of two records.
CHECK (no parameters)
If any COMPARE instruction has discovered a lack of
identity, then CHECK will act like a DONE instruction.
If no COMPARE has been given, or if all COMPARE's
have found identity, then CHECK has no effect.
DIRECTORY (no parameters)
(may have optional parameters) See
Section G.
Lists the AND Directory entries for all records
filed under the usage number of the most recent
USER instruction. The following information is listed
on one line for each record:
l. program number and dump count
2. number of card images
3. first AND block and total number of
AND blocks occupied by the record on
disc or on tape.
The usage number, current date, and the amount of
available AND record space are also printed by
DIRECTORY.

If the program originated from a remote teletype,
then the directory will be typed out on the remote re-
gardless of what print option is in force, whether or
not a TTYPE instruction has been given.

DCGNE (no parameters)
Terminate AND run. Writes an AND End-of-File image
after the last image in the Scratch Area (See discus-

sion in DUMP).

66

(28)

(29)

(30)

(31)

PURGE (no parameters)
PURGE (parameters) (see Section G)
Remove the AND record selected b§ the most recent
(USER, FILE) pair from the AND Directory, if this
AND record has a Usage Number which agrees with
that on the Job Card. The space which this record
occupied on the disc will be made available to
other AND records. PURGE marks <file number>
undefined, so that a new FILE instruction must be
given to subsequently refer to any AND record.
RESET [n]
Sets Scratch Area pointer g «n. This instruction
is normally used with n = 1 to clear the Scratch
Area to start a new collation.
DOLDUMP (no parameters)
DOLDUMP (parameters)

The often used sequence of instructions:

GET TO $; DUMP ;

can be replaced by the instruction DOLDUMP. This
will be very useful to programmers in the habit
of forgetting
to GETTOS ;
before they DUMP ;
DOLDUMP may have an optional parameter similar to
that for DUMP.
LAF '<two characters>'

The two characters enclosed between the quotes
will be made the terminating language field for
TEXT instructions and editing instructions which
call on TEXT. The normal language field is AN so
that a LAF 'AN' is effectively executed before AND

starts processing instruction cards.

(32) ... SECRET
(33) . 'PUBLIC
Provisions exist for permitting only the

Man Number under which a program is filed to
access the file. The instruction SECRET will
mark the currently selected (USER, FILE) pair so
that it can only be accessed if the Man Number
on the job card agrees with the Man Number in
the (USER, FILE) pair which has been marked as
SECRET. The instruction PUBLIC will mark the
currently selected (USER, FILE) pair so that it
can be accessed by any Man Number. A file when
first created will be accessable to any Man
Number, i.e., in the PUBLIC state. (The instruc-
tions PUBLIC and SECRET may have a parameter(s)

as described in Section G).

G. Optional Parameters Description
The instructions PURGE, SECRET, and PUBLIC may have an
option <PARAMETER> as defined by the following:
<DUMP-COUNT> ::= /<integer> | /PERIL|<empty>
<PARAMETER> ::= <File Number> <Dump Count>
If the <DUMP COUNT> is <empty>, /PERIL will be used for the <DUMP-COUNT>.
The effect is to make the <PARAMETER> the currently selected file for
the execution of the instruction, as if a FILE <File Number>/<integer>
instruction were given just previous to a PURGE, SECRET, or PUBLIC
instruction. Thus the instructions
EXAMPLE 1:
PURGE 1/3; PURGE 2/PERIL; PURGE 3;
will accomplish the same result as the instructions
EXAMPLE 2:
FILE 1/3; PURGE;
FILE 2/PERIL; PURGE;
FILE 3/PERIL; PURGE;

with the following exception:

68

Using the <PARAMETER> capabilities of PURGE (or SECRET OR PUBLIC),
as in Example 1, will not abort later DUMPs or CREATEs because of
files accessed PERILously, while an explicit FILE <File Number>/PERIL
instruction, as in Example 2, will abort later DUMPs. and CREATEs.
The <PARAMETER> to PURGE, SECRET, and PUBLIC may have a <PARAMETER LIST>
as defined by
<PARAMETER LIST> ::= <PARAMETER> |
<PARAMETER LIST>, <PARAMETER>
thus the instructions of Example 1 may be written in one instruction, as
in the following:
EXAMPLE 3:
PURGE 1/3, 1/PERIL, 3;
The <PARAMETER LIST> will be executed in left to right order, and an error
on one item of the <PARAMETER LIST> will cause all items to the right of
it to be ignored.
The instructions DUMP and CREATE may have an optional <PARAMETER>
which is defined by the following:
<DUMP-COUNT> ::= / <integer>
<PARAMETER> ::= <FILE NUMBER> <DUMP-COUNT>
The effect is to mark the <PARAMETER> as the currently selected program,
as if a
FILE <FILE NUMBER> <DUMP-COUNT>
were given just previous to the DUMP or CREATE instruction. Thus, the
instruction
DUMP 7/0
is exactly equivalent to the instructions
FILE 7/0; DUME;
The <PARAMETER> to CREATE is used in the following manner:
CREATE 71 CARDS FOR 9/0; CREATE 5 BLOCKS FOR 100/0;
The preceding instructions are exactly equivalent to the instructions
FILE 9/0; CREATE 71 CARDS;
FILE 10/0; CREATE 5 BLOCKS;
USER $2282z01
PEEK 100, ALL;

69

are executed, the first 100 cards (or if the record contains less .

than 100 cards, then the number of cards it contains) will be listed

for all (USER, FILE) pairs containing the Man Number ZZ0l.

Summary of AND Instructions

Note: o = Scratch Pointer

8 = Record Pointer

=~

10.

1L.

USER <Usage Number>

FILE <File Number>/<dump count>

DUMP

DUMP <File Number> /<dump count>

: U «<usage number>
§ «Pe<undefined>
P «<program number>
Select record (U , P);
5§ « 1; = BINARY
(Selected record)

«(Scratch Area)

Select new record

5 «l; o unchanged

NOSAVE

RUN, <System Name> (or (<Logical File Type>))

RUN, <System Name> (or (<Logical File Type>)) , TAPE

RUN, <System Name> (or (<Logical File Type>)) , CARD

RUN, <System Name> (or (<Logical File Type>)) , (<Logical File Type>)

SET [p) : 8 op

GET [n] : Fetch n images (§), (6 + 1)

, (8§ +n -1) into

Scratch Area; § « 8 + nj
g «ag +n,

GET TO [p] : Fetch (p-8 +1) images (§),
(6+1), .., (p) into
Scratch Area; 8§ «p + 1;
O 0o +p -6 +1

TEXT Stop on 'AN' saad Has

In any of the following, $ may be used
LOAD [p] te [q]

LOAD [p]

INSERT AFTER [q]

i

for [q] or [r].

= SET [p]; GET TO [q]
= LOAD [p] TO (p]

= GET TO [q] ; TEXT

12.

3.

15.

16.
17.

18.
12,

20.

2T

22.
23.
24,

25

DELETE [p] TO [q]

DELETE [q]

ALTER [p] TO [q]

ALTER [q]

PUT [p] TO [q] AFTER [r]

PUT [q] AFTER [r]

PRINT TEXT
PRINT ALL
PRINT
PRINT NO

PRINT SCRATCH
PAGE
TTYPE (k]
TTYPE

1l

NO TTYPE
PEEK [n]

FILE <file
number>/<dump
count> (<inte-
ger>)

CREATE <inte-
ger> BLOCKS :
CREATE <inte-
ger> CARDS
AVAILABLE
BINARY
COMPARE

CHECK

= GET TO [p-1]; SET [q+l]

= DELETE [q] TO [q]

= DELETE [p] TO [q] ; TEXT

= DELETE [q]; TEXT

= GET TO [r]; LOAD [p] TO [ql;
SET [r+1]

= GET TO [r]; LOAD [ql;
SET [r+1]

AND Instructions? new text? from record?
yes yes no
yes yes yes
yes no no

no no no

List entire present Scratch Area contents
New Page

Give teletype output, k characters per lif
TTYPE 66

No teletype output

Print n images from each record of

currently selected user.

Set FILE to be Logical File Type <intege!

Reserve <integer> BLOCKS or CARDS of
available space for currently selected
(USER, FILE) pair

Print information about available space
No new serial numbers in Scratch Area

Compare scratch to selected record

Terminate run if any errors have been

found by COMPARE.

26,

27.

29.

30.

31.

3.

33,

DIRECTORY

DONE
PURGE

RESET [n]

DOLDUMP =

LAF '<two

characters>":

SECRET

PUBLIC

Print information about current users
records.

Terminate AND program

Delete currently. selected file from
directory

T en

GET TO $; DUMP

Change text terminating language field
to the <two characters> specified

Mark currently selected file accessable
only to creator.

Mark currently selected file accessable

to any user.

V. AND Error Messages

AND performs many checks on the validity of the instructioms it

axecutes. 1If an error is detected, AND will print:

(1) The current instruction card: (Note: except in print mode

"NO", this will be the second time this card has been printed) ;

(2) A pointer of the form . . above the last column scanned

on this instruction card, and
(3) An appropriate error message;
The following specific changes have been made:

(A) All superfluous <TAB> characters in AND instructions typed
at a teletype are ignored in scanning AND instructions. The
<TAB> character will still appear as '=' in the printed image

of the instruction card.

(B) 1In the delimiter TO in parameters to AND editing instructioms,
the 0 ("OH") can be typed (by mistake) as a zero, without causing
an AND error.
The error message can be classified as follows:
(1) Error of syntax on AND instruction card:
'IMPROPER AND INSTRUCTION'
'MISSING NUMERIC INSTRUCTION'
' IMPROPER CHARACTER ON INSTRUCTION CARD'
If columns 1 and 2 of an instruction card do not contain either
"AN' or blanks, AND will print the message 'IMPROPER LANGUAGE FIELD'
and then attempt to scan columns 1 through 80 of the card instead of
3 through 30. If this modified scan yields well-formed AND instructions,
they will be executed.
(2) Improper parameters to collatiom instruction.
The four messages which may occur and their meanings
are summarized below; where there is a particular
parameter in error, that parameter is denoted by "[e]".

All of these four errors are recoverable.

. (3) Improper parameters to other instructions:
'IMPROPER PROGRAM NUMBER' (P> 127)
'INVALID FRINT PARAMETER'
'IMPROPER PARAMETER TO RUN' (first parameter
is not valid system name, or second parameter
is not <empty>, "CARD', 'TAPE', '<Logical File Type>')
"DUMP COUNT INCORRECT'
'DUMP COUNT MISSING OR INCORRECT IN FORM'
(4) Miscellaneous
'"USER OR PROGRAM MISSING'
'YOU ARE NOT PERMITTED TO DUMP, CREATE, OR PURGE
THIS PROGRAM' (i.e., USER does not agree with
job card)
'THAT AND RECORD HAS O CARDS' (a "RUN, <system>,
TAPE" instruction has tried to set the (15 switch
to take input from an AND record, or else a SET
instruction has been given; the record contains no
card images, possibly because an earlier AND run
was terminated by an error before anything was
dumped into the record).
'RUN TERMINATED BY CHECK'
'AND PROGRAM TERMINATED BY END-OF-FILE'
AND will generally recover from syntax errors om
AND instruction cards. There are three cases:
. (1) If an instruction has been scanned and a
legal set of parameters follows, then the
next item scanned must be a delimiter ...

a semicolon, a bar, or the end of the card.

If not, AND will check that the character is
a letter; if it is a letter, it will be
assumed that there was a semi-colon omitted,
the message:

MISSING DELIMITER
will be printed, and AND will start scanning

the letter looking for a correct instruction.

Any cother case will fall under item (2).

(2) 1f a syntax error occurs in the parameter
of an instruction, AND will skip to the
next delimiter and print the message:
IMPROPER PARAMETER
(3) 1If an alphabetic instruction name is
encountered that is not a legal AND instruction,
the message:
IMPROPER 'AND' INSTRUCTION
will be printed, and AND will skip ahead to
the next delimiter to start scanning again.
More than 20 AND errors will cause AND to terminate
with the message:
TOO MANY ERRORS, I QUIT.
(4) AND System Errors
If any error message containing the phrase:
" (PANTC*##%) "
occurs, it should be brought to the immediate
attention of Computer Center staff, since it

indicates a potentially serious AND system error.

AND REFERENCE

Users are referred to User Consultant and Dennis Moyles (staff member),

Director of Special Projects.

