AL,3a.l
CHAPTER 3

Input/Output Statements

3a. Introduction

The official ALGOL-60 language does not include input/output
statements, Thus, ALGOL-60 can be used to describe computaticnal
algorithms but not the process of reading input data from punched
cards, magnetic tape or disc, or the process of outputting intermed-
jate and final answers onto printed pages, punched cards, magnetic
tape or disc. Each ALGOL translator, therefore, must contain itfs own
scheme for programming input and output operations.

ALGOL-20 includes an input/output ("I/0™) system derived from
the system used previously in the GATE language at Carnegie Tech.1
The following pages contain both an introductory explanation and a
complete technical descripticon of ALGOL-20 statements for reading data
cards and for printing and punching answers.

Chapter 3b is a primer on ALGOL-20 I/O which takes a particular
example of printed output and builds up its solution, It is introduc-
torv in nature, and concerns only printing. Punching requires only
simple extensions oif the concepts used in printing. Chapter 3c is a
primer on READ which includes a completely worked-out example. Chapter 3d
contains a complete summary of all input/output instructions.

ALGOL-20 also contains provision for reading and updating files of
information stored on magnetic tape or disc. This mechanism is related
to the card reading, printing and card punching statements, but involves

additional complexity. It is described separately in Chapter 6g.

1 The GATE input/output system is described in the manual: "20-GATE:
Algebraic Compiler for the Bendix G-20", Carnegie Tech Computation Center,
September 1962. The general principles of the ALGOL-2C input/output

system were the subject of a paper presented by A, J. Perlis at the Work-

ing Conference on Mechanical Language Structures, August, 1963, published

in Comm. A,C.M., 7 (Feb. 1964) p. 89.

AL.3a.2

AL.3b.1
CHAPTER 3b

Primer on ALGOL-20 Input/Output

Consider the task of programming a computer to print answers.
To control printing, such a program must specify two distinct kinds

of information:

(1) Which values are to be printed, and

(2) The format in which the values are to appear on the page.

To supply these two kinds of information, ALGOL-20 contains two types
of statements: NAME statements, which select the values to be printed,
and PRINT statements, which specify the printed format for these
values. "NAME" and "PRINT" are reserved identifiers in ALGOL-20. In
general, each NAME statement is paired with a PRINT statement and the
two are used in parallel to control printing; each value specified by
the NAME statement must be matched with a format specification from the
PRINT statement.

The remainder of Chapter 3b is divided into sections, as follows:

A. The NAME Statement: Introduction
B. The Format Program: Introduction
C. The Print Buffer

D. An Example of Print Format

E. Replicators: Introduction

A. The NAME Statement: Introduction

A NAME statement in ALGOL-20 has the following form: The reserved
identifier NAME followed by a pair of parentheses enclosing a name list.
For printing (or punching), the name list is a list of values to be
output and therefore is simply a list of arithmetic expressions (separated

by commas) :

NMAME (< Arith Expr >,..., < Arith Expr >)

AL.3b.2

When a value is needed by a PRINT statement, the value of the next
expression in the NAME list is computed and supplied to the appropriate
PRINT instruction. Expressions in the NAME list are evaluated in left
to right order, and the corresponding values are printed in the formats
specified by the PRINT instructions.

For example, to print the values of the ALGOL variables A, B and C

and also the value of the expression a/ B2 - 4AC, the programmer may use
the NAME statement:

NAME (A,B,C,SQRT(B t 2 - &4¥A%C))

along with an appropriate PRINT statement.

NAME statements may be more complicated. For example, they may
contain for clauses and other forms of replicators which repeat the
selection of values in a manner analogous to the repeated execution of
an ALGOL statement by an ALGOL for clause. Replicators are discussed in

Section E.

B. The Format Program: Introduction

Suppose that the value 1.7 has been computed and is to be printed
by an ALGOL program., This number could be printed in any one of many
different formats; for example, one of the following forms might be

appropriate in a specific case:
1.7 +1.7 +00001.700 170 01 L.70 ,+00 17000 =04

However, there is more to format control than specification of the forms
of individual numbers. Answers are generally to be printed in 2 readable
manner: separated by blank columns and accompanied by suitable headings
and titles to identify the printed results. Therefore, a PRINT statement
must give the programmer control over the position of each number and
title on the line, the assignment of numbers to different lines, the

spacing of printed lines on the page, and the sequencing of pages, as well

as the form of numbers.

AL.3b.3

To control all these aspects of format, ALGOL-20 contains a
special "format language", which is used within PRINT statements. A

series of instructions in this format language forms a format program.

The individual instructions within a format program are separated by
commas .

The format language uses some of the same characters that ALGOL
uses, but with different meanings. Therefore, special brackets must
be placed around each format program to set it apart from the ALGOL
program in which it is embedded. Unfortunately, there are no unused
symbols available in the G-20 alphabet for these format brackets, so
we use "<" (less than) and '">" (greater than) for this purpose. The
syntax of a PRINT statement is such that "< and '">" symbols surround-
ing format programs cannot be confused with the same symbols in Boolean
expressions.

The simplest form which a PRINT statement may have is the reserved
word PRINT followed by a pair of parentheses which enclose a single
format program, or enclose a series of format programs separated by
commas. Each format program is itself enclosed in "<" and '">" brackets.
The following PRINT statement, for example, contains a single format

program which consists of five format instructions:
PRINT (< P, 37C, 'A=', + 2D.3Z, 2E >)

The meanings of these instructions will be explained below. The effect
of this PRINT statement would not be changed if each format instruction
were enclosed in format brackets, so that the PRINT statement contained

five format programs each consisting of a single format instruction:

PRINT (< P >, < 37C >, < 'A=' >, < +2D.3Z >, < 2E >)

AL.3b.4

C. The Print Buffer

Associated with the G-20 printer is a block of 120 consecutive
cells in memecry, called the print buffer. These cells, numbered

1, 2,3

sers, 120, correspond to the 120 physical print positions ox

3 >

"columns" in a line of printing.

The process of printing takes place in two steps: First, a
format program in a PRINT statement places the characters to be printed
into the print buffer, each character being placed into the cell
corresponding to the column in which it is to be printed. In this
manner, the format program builds up an "image" of the line to be
printed. Second, when the entire line has been formed, a format control
instruction must be executed to send ail 120 characters from the print
buffer to the printer and actually print the line on the paper. The
format instruction which is generally used for the latter purpose is
'E', which is mnemonic for Execute. The E instruction prints the image
in the print buffer and afterwards automatically "erases" the print buffer

(i.e., clears it to 120 blank characters) in preparation for the next

line.

The print buffer behaves like other memory cells: Storing a new
character into a buffer cell replaces the character which was there
previously, while sending a character to the printer to be printed does
not (necessarily) erase it from the print buffer. 1In particular, the
control instruction 'W' executes the same printing operation as 'E' but
does not erase the buffer afterwards. Thus, the programmer may, if he
wishes, save part (or all) of the print image for printing on successive
iines.

Associated with the buffer is a pointer called the "echaracter pointer™
or "CP", The value of CF is always the number of the print buffer column
into which the next character will be stored by a format instruction. As
each character is stored, CP is automatically stepped ahead (to the right)
by one so that successive characters are stored in left-to-right order
into successive cells, Therefore, execution of a format instruction which
stores characters into the print buffer automatically leaves CP set to

the first column after the last character stored. For example, if CP is .

AL.3b.5

47 and a format instruction stores a number requiring 5 columns, CP
will be left at column 52.

Another pointer contains the '"left margin" or "LM". The value
of LM is the number of the left-most column into which characters may
be stored. Execution of the instruction "E" leaves CP reset to the
value of LM. (Execution of "W'" leaves CP unchanged.) There is also
a pointer which contains the "right margin" or "RM" -- the number of
the right-most column into which characters may be stored. Initially,
LM and RM have the values 1 and 120 respectively. Before each charac-

ter is stored into the print buifer, a check is made to insure that:
1M < CP < RM

If this relation does not hold, an "E" is automatically executed: the
characters already in the buffer are printed, the buffer is cleared,
and CP is reset to the value of LM, The character is then stored into
the buffer. The mechanism for changing LM or RM is explained in

Section E of Chapter 3d.

D. An Example of Print Format

A particular print program will now be discussed in detail. Assume
that an ALGOL program computes all the values in a 40 x 10 array
{40 rows x 10 columns) COEF; these 400 values are to be printed along
with a value of a simple variable DELTA. A sample of the desired print-
ing is shown on page AL.3b.7.

The printing begins with a title, "ADJUSTED COEFFICIENT MATRIX",
which starts in print position 37 of the first line on the page. The "1"
in the next printed line is in column 17, the "2" in column 28, etc,

The row numbers, down the left-hand column, are in print positions 6 and 7.
Each matrix element occupies nine positions in the printed line and is
separated from its neighbors by two blank spaces. The numbers to be
printed are all less than 1000 in magnitude, and four digits are to be

printed to the right of the decimal point. A minus sign is to be printed

AL.3b.6

immediately before the first digit if the number is negative. The

value of DELTA is to be printed with two significant digits in
"scientific notation'", with a power of ten, as shown. No sign is
to be printed for DELTA. The step by step construction of the

necessary NAME and PRINT statements for printing this example follows.

First, consider printing the title, Three different types of

formating operations are needed for this purpose:

(1) An instruction is needed to begin printing at the
top of a page.

(2) An instruction is needed to indicate that the
information is to be printed starting in column 37.

(3) Instructions are needed to specify the information

to be printed.

Since the title is a fixed string of alphabetic information, it is
convenient to include it entirely in the PRINT statement, with no
corresponding value in a NAME statement. In fact, if only fixed infor-

mation such as a title were to be printed, no NAME statement would be .

needed with the PRINT statement; this is an important exception to the
general rule that NAME and PRINT statements come in pairs.
To specify a title or any other fixed string of alphabetic charac-

ters to he printed, we use a format instruction called an alphanumeric

string instruction. This is simply the string of characters to be

printed, enclosed in quote marks. Such an instruction can thus be used
to print any character except the quote mark, since a quote within the
string cannot be distinguished from the quote terminating the string.
(A special format instruction is provided for printing a gquote mark --
see page AL.3d.6) The alphanumeric string imstruction used to specify

the title is:

'ADJUSTED COEFFICIENL MATRIX_-u DELTAL=('

(Here and in the sequel we use the symbol "_)' to represent a blank

column, where it is necessary to emphasize that a column is to be blank.)
Biank is a legitimate alphabetic character, so all blanks appearing in the

alphanumeric string instruction will appear as blank columns in the title

as printed.

AL.3b.7

Ti00*
gesl’
pooo?
96"
Tep0”

Teoo”
gege
eigl’
geel!’
voco:®

2650"
erT0*
el
XA
L990°

Deie*
B9¢9’
At
CASRN
£99c”

copo*
trog*
A 24-N
Tooot
6866

gooo-
SEGe”
9¢10°
CATAS
gL’

ocoo*®
gooo
poog*
0Bge”
Té60

vLGE"
vQoo0*
Tl
gooo"”
14T

0

0
L
v
IS
0

O oo o

Ge
0~

G-

Te
ﬁ.
Ge
T
T

U
vT
(=
0
g

(1
(1
¢
3
Lw

¢
¢
U
L
3

(1=
0
Ol
U
A

1

?RTI9'E
6TEv 912
000
£L68'99
BTIOO" 0~

R A e
2000 0=
€000t 0
cpeo"a
10000~

0LCT QB
bev6' 08¢
TCo0t0
Letetwig-
pogo*e

LBYSE*D
opoo*o~-
Too0to0
918692
poogre

i52e'e
TRUE -
repdtl-
L90L' 9=
0Tpe*ETc

y080* 0~
€T1e 102~
EEvs*d
vgce" 0
SEEL T

T000*0
gooo*o
9zg0*' 0~
0E0E*961-
L4800

gLp0 0
20100~
9p50° 0=
IR
0T9T TT=

]

B9CE*Br G~
nogo*o-
LL2200
2vI10*0
99698 T~

g900°
2o60’
¥ezo’
8600°
£xeot

O oo o0

gopoo"o
L7000~
EETAVREIE
GoeLtBEE
£ETI0'0

60040
gzl
9pTR*QEE
a0o0* o
GEIL'0

L0g2tes-
£120'0-
£100°'0-
$100°0
FAVFAVIN

0ogo*o-
9¢9¢*0z
r&00°0-
£00G*0
cllg*vés~

BLivtovi
£700°0

Bl/0'2¢
p0ps 62=
T900'0=

8601 G-
geon'T
118G 'p-
gzc* o=
£LG0 0~

&

cveT 0=

TH09'8LE
paee T~

£686*5¢

gooo=0

p2¢0°0-
D900 0~
cT98*8BET
PRTLTER
£¢o00°0-

oopc*0-
$670* 0~
v6c0* 0=
cLEBGL
v 08 ET-

EREZLCLCE-
b 008
Zr96 6l
$g08' 21T~
fpestl

2099*9LS
£Z2698E-
£600°*0
v0/0*65¢
cZT0' e~

qTI0*0
grTsE-
poo0*o~-
Tnoo*o-
0T10°'89¢%

oTcb e
699T0

26500~
Ly00t 0~
10000

peel* 0~
3Tet D
$5I18'86-
2EELCT
pe00*0

vQ=" 0°'5

£IE6° 2T~
Gpoo*o=
Czeg -
oooo*o
T£00°0

AT AA
SLs6" =
€961 L
geL0'CTE-
£600* 0~

G499 'vBY -
CARSIREY
gele'l
£I00°D
6400° 0=

gegoty-
zo00o"0~-
60800
£e00* 0~
9286 ' HT1~

5z20° 0=
bNZZ* 62
gz6T ¢~
62bb 9b-
bC60° 9

ooGo*o
0666°'0TT
TrG0* 0=
codg"p~
gzon*o~

Cp62°' 8T~
¥100°0
znog*e
gz0T 0«
PIS0T AT

¢coo*c
cg0T* 0~
GoéET el
99Z2L'97-
podg"C=

9

= Y1733

v/G82'6BE
groo*n
6100
1000'0-
9998 '0b=

9/6b*T
noaog*n
2000 Q=
0eC0*D
LETO 0=

2eazZt
Gpu6* /06~
gplo*eg
T190*TT=-
Gpaf*tEEs

v 00D
6RUE L
AR
4¢F0'0-
p/00'D-

ooog*o0~
LpBO'D
cel0T cege-
9486 46T~
apO0*d

T200°0
/900*0-
opobo*o
poldo*0=-
2L900

VR SAAN
zulc*c=
gzYe Ll
gooo*n-
To0o* o=

biE0*CLE
gte6°0c=
cg00* 0=
L0800

05000~

¢gd0*n~-
(p9TthEn~
Yepp e
G168 LEp=
cHEy b~

Ipgl*Cva-
£p00*0
£81LtT
TO0ET*6ET
etni*o-

eLst
999 * Q6T
£oga*o
1686712~
o000~

LA R
86000~
Tuoo*to
gleTred
0000*0

gLt e
g0o00°0~-
#0000

L8329
90s6'212

$662°559
Ct00°0-
LL0ETEY
5¢00*0
6G6L°6LT

£geety
croet o~
AR
gegntedl
Te00*0

T000°0
suobto
9G04 0=
g6l
gOGLD

t312'apg-
L9b2 516
19612
19L2°69T =
PEEG D

ST30'0
ALU0" 0=
ZLAG'GEY-
gecérzei-
PO L e

cocoto-
T A8
gocoto-
5TET 0=
68000

TTRe 88~
Z3700*n
6612212~
#0490
PLEF*EE-

A3 N
6690 n-
T500¢C-
3T21*0
2gch*'0~

L1u0t
¢ese’t
1000
cLN0'eT~
LI8LEr T~

oo o0

2ogot
GOGET?
aGud”
0g%n*a
26Vl

ho o

nooo*g-
geuora-
LETUCO-

40000

0oco*o

XTs8lvw LIN312144300 031SNrov

9Ty "
Ceat?
DN
gauot
agn”

L3628
66éo*
n860"
v000"
1 TATA

nonge
ce9g”
AR
g0gqQ0°”
T000"

LLTR”
Jeags”
Irpe "
arbg’
600"

2iLrer
cersst
riEH "
tyiv®
L6L9"

Tege!
6T’
onte
guen’
zelo®

L5671
LTV
Cado
£T60
9eTe”

o R I B N 3]

ceve”
S9cEg”
400"
cGQTs”
tooo”

¢

[NV ST o B o B 4
L}

I AN
@ M~ T
L

TN~ D

o e
B
L}

)

o

o

L B o B SR o= BN« 4}
E ™ ¥

cpndtor-
gnnatn-
cérgrie
Ennp*o

P20 0=

eonpto
PCge'0TT
50000
Loaptilg-
agng*o

wLngte
Lvist0
gLl 0
AR
gaeet o

0Inn'0-
CECTO
et 0T
BI00t0
Sige* 0

21000
Sea0*0-
2Ty0t /42T
te/e"C-
tOD0" D

LEGT)=
PO 0~
ppPe e~
CpeDtl=
¢ind*cC

13670
LTRyGY
Tieg' 0
reegtc-
rage'c

H61T'0~
07691~
T1ag' 0=
Tog0*p-
2helt T

T

(1%4
6%
Y
LE
9¢

0e
6T
8t
(3
Ch

AL.3Db.8

This string is to be stored in the print buffer starting at
column 37, so CP must be set to 37 before the alphanumeric string
instruction is executed. The format instruction to do this is "37C";
here "C" is mnemonic for "Column". Generally, executing an instruction
of the form "nC", where n may be any integer in L = n = 120, will have
the effect of setting CP to column n: CP < n. The format program
<1C, 37R> might also have been used. 1C sets CP to column one, and
37R moves CP 37 columns to the Right. Similarly, nL moves CP n columns

to the Left. To summarize:

nC has the effect CP «—n
nk has the effect CP « CP + n
nL has the effect CP «CP -n

Therefore, the following format program will set CP to 37, place
the 40 characters of the string into print positions 37 to 76 of the

print buffer, and then print the buffer:
<37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = ', E>

This could just as well have been written as three successive format

programs by putting brackets around each instruction:
<37C>, <'ADJUSTED COEFFICIENT MATRIX =~ DELTA = >, <E>

but the first form is easier to punch. The instruction necessary to
store the value of DELTA into the print buffer is still missing. For

reasons which will be discussed later, the appropriate numeric instruction

is 1D.1ZL. Further, the title is to be printed at the top of the page.
The format instruction used to upspace the paper to the top of the next
page is "P". Thus, a complete ALGOL-20 program to print the first line

of the example might be

NAME (DELTA) ; PRINT (<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = ',
iD.1ZL, E>);

Equivalently, the following might be used:

PRINT (<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = '»);
NAME (DELTA) ; PRINT(<1D.1ZL, E>);

AL.3b.9

Next consider the format for printing the number DELTA and the

numbers of the matrix itself. Numeric instructions are those instruc-

tions which place numbers into the print buifer; these numbers are
values which are obtained from the evaluation within the parallel NAME
statement.

A numeric instruction may be regarded as giving a "picture'" of the
number to be printed. Generaily, the following items must be specified

to define a number format:

(1) The form for printing the sign, if at all.

(2) The number of places, if any, to the left of the
decimal point, and whether leading zeroes are to
be inserted or left as blanks.

{(3) The decimal point, if any.

(4) The number of places, if any, to the right of the
decimal point, and whether trailing zeroes are to
be inserted or left as blanks.

(5) The "exponent part" (power of ten), if any.

Items (2), (3) and (4), defining the format of the numeric part of
the number without sign or exponent, are specified by the number form
portion of a numeric instruction. Item (1), the sign, is specified by
the sign part, which is part of the prefix, while item (5) is specified
by the suffix of the numeric instruction. The form of a numeric instruc-

tion then is given by:
<numeric instructiom> ;:= <prefix> <number form> <suffix>

(We will see later that the prefix includes, in addition to the sign part,
a part which controls the printing of dollar signs.) The number form
gives a simple picture of the basic form of the number; as an illustration,

the matrix values in the example may be printed with the number form:
3D.4Z

Here "3D" indicates three Digits to the left of the decimal point, with
leading zeroes replaced by blanks; the period is a picture of the decimal
point which is to be printed; and "4Z" means four digits to the right of
the decimal point, with trailing Zeroes printed. For example, the number

3.74 will be printed:

AL.3b.10

by 3D.4D in the form Uudeldinyg
by 3D.4Z in the form uud 7400
by 3Z.42 in the form 003.,7400
by 3Z.4D in the form 003,74,
by 37 in the form 004,
by 3D in the form g

All blanks stored are shown explicitly byri. Notice in the last two
examples that the number was rounded by adding five to the first digit
not printed, and then truncating the result. The syntax of number form

is as follows:

<number form> ::= <integer part> | <integer part>,

<integer part>.<fractionmal part> |.<fractional part>
<integer part> ::= <unsigned integer> D | <unsigned integer> 2

<fractional part> ::= <unsigned integer> D] <unsigned integex> Z

If the integer part (fractional part) appears, at least one digit will be
printed before (after) the decimal point. For example, the number zero
printed with the numeric primary 3D.2D appears as ' 0.0 ', The total
number of digits specified must be less than 15,

In our example, DELTA is to be printed with one digit preceding and
one digit following the decimal point, so it may be printed with any one

of the following number forms:
1D.1D 1D.1Z 1Z.1D 12.12

The program which actually printed the sample included 1D.1Z to print
DELTA.

The prefix includes the sign part to specify the form for printing the
sign of the number, If no sign is to be printed, this part is left empty,
as is the case for DELTA. The array elements are to be printed with a
minus sign immediately preceding the first significant digit of each
negative number. The sign part to use in this case is "-", If in addition
plus signs were to be printed before each non-negative number, the prefix
"+ would be used instead.

The suffix portion of a numeric instruction is used to supply supple-
mentary information, such as scaling the number, printing an exponent or
special spacing. The format for the array elements is completely specified

by the prefix and the numeric primary portions, so the proper numeric

AL.3b.11

. instruction is -3D.4%Z, DELTA is to bhe printed in scientific notation:
shifted so that the left-most digit is non-zerc (if possible) and the
resultant exponent printed. The suffix "L" provides such printing, so

the numeric instruction 1D,.1ZL is to be used to print DELTA.

E. Replicators; Introduction

in principle, everything which is necessary to print the example
has now been discussed. However, writing or punching the NAME and
PRINT statements for the example using only the NAME and PRINT machinery
discussed so far would be very lengthy and tedious., For example, it seems
as if the NAME statement would have to be a simple list of all of
the 401 variable names DELTA, COEF[1,1), ..., COEF[40,10], while the
PRINT statement would have to contain 401 distinct numeric instructions
in addition to alphanumeric string instructions and control instructions.
What is needed is a "loop" mechanism analogous to the ALGOL for state-

. ment; this mechanism is provided by replicators.

An ALGOL program which would operate in some way upon each element

of each row of the matrix COEF would presumably have the form of two

nested for statements:

FOR I « STEP 1 UNTLL 40 DO
FOR J «] STEP 1 UNTIL 10 DO
something with COEF[I,J] ;

This is essentially the form which is used in the NAME statement; the
"action" to be performed on COEFEI,J] is simply "naming" its value
under the control of these FOR clauses. The following NAME statement

will supply all 400 values from the array COEF for printing:

NAME($ FOR I « 1 STEP 1 UNTIL 40 DO $
($ FOR J « 1 STEP 1 UNTIL 10 DO $
(coEF [1,3])));

AL,3b.12

The "$" signs are necessary around a FOR clause when it is used as a
replicator in a NAME {or PRINT) statement. Also, the phrase being
replicated must be enclosed in parentheses, whether it is only a single
expression like (COEF[I,JJ) or a complex expression which itself con-

tains a replicator, like:
(5 FOR J «D0 § (COEF[1,J]))

This accounts for the three sets of parentheses in the example above.

The following is the syntax of a NAME statement:

<name statement> ::= NAME (<name list>)

<name list> ::= <name list element>] <name list>, <name list element>
<name list element> ::= <name expressior> | <replicator> (<name list>)
<name expressior> :!:= <arithmetic expressiomn> 1 <Boclean expression> }

<logic expressiomn>

"names'" may be

This syntax shows that any simple or complex list of
enclosed in parentheses and replicated; such a replicated list may then
be a single element in another list. The following legal name statement

illustrates lists and replicated lists:

aME (A{1], § FOR J « 1 STEP 2 UNTIL 3 DO $
(3, ala), coer(1,3)y, al7))

This example is equivalent to the following more simple statement:
aave a(1], 1, al1), coer(z,1], 3, a(3]), coer(1,3), A7)

As ancther illustration, refer again to the example, where the row
number is to be printed on every line of the matrix. The simplest way
to print these numbers is to give their values in the NAME statement and
use numeric instructions to place them into the print buffer. Thus, the
following NAME statement will supply (in addition to the array value),

the row number I just before the first element in each row:

NAME ($ FOR I « 1 STEP 1 UNTIL 40 DO $
(I, $ FOR J « 1 STEP 1 UNTIL 10 DO $
(coEF[1,3))));

AL.3b,.13

Since for clause replicators used in format programs very frequently
start at one and increase in steps of one, an abbreviated notation has

been provided for this special case. The replicator
<yariable» — § <arithmetic expressiom> §
has the same meaning as:
$FOR <variable>» « 1 STEP 1 UNTIL <arithmetic expression>$

Therefore, the NAME statement given above for the matrix with row numbers

may be written more compactly as:
NAME (I — $408(I,J — 10(COEF[1,3)))) ;

One more simplification is possible in this form; in the special case that

the <arithmetic expressior> giving the upper limit of replication is a

constant (like "40"), or a simple variable (like '"N"), it need not be

surrounded by "$" signs. Thus, for example, "I - N" is a correct replica-
tor. "I — N-1" is incorrect since dollar signs are required around the
arithmetic expression; the correct replicator would be " — $N-18",

To print the column headings in the example, the values 1, 2, ...,
10 must be supplied in a NAME statement., The simplest NAME statement for

the column headings is:
NAME(I — 10(I)) ;

That is, I runs from 1 to 10, and it is the value of I itself which 1is
to be printed.

The same forms of replicators which are used in NAME statements may
also be used to execute repeatedly format programs or lists of format
programs in PRINT statements, Thus, instead of writing “<2D, 2D, 2D, 2D>",
we may write "J — 4 <2D>", In the case of a replicator in a PRINT state-
ment, however, the actual value of the replicated variable frequently is
not referred to; that is, the replicator is used simply as a counter. In
such a case, the variable in a " — " replicator may be omitted; thus,

" 4 <2D>" may be used to get four repetitions of the format instruction

"2Dll .

AL.3b.14

Following is the syntax of replicators:

<replicator> ::= § <for clause> 8 [<simple variable> — <limit> 1
- <limit>
<limit> ::= § <arithmetic expression> § ! <simple wvariable> |

<unsigned integer>
Some examples of these forms follow:

S FOR J < 2, 3, K+ 2 STEP 3 WHILE A[K) < K DO $
g% @l /2 +3
J — N
J =3
~s 1) /2) +3
— N

-3

If the upper limit of replication has a value such that zero or
fewer replications are called for, then the phrase which is being
replicated will be skipped entirely.

As an illustration, the NAME and the PRINT statement for printing

the column heading of the example are:

NAME (I — 10(I));
PRINT (<16C>, — 10 <2D, 9R>, <E>);

Notice that the entire format program <2D, 9R>» is replicated ten times.
The replicators are not part of the format language, and must therefore
appear outside the format brackets.

The variable I cannot be omitted from the replicator "I — 10" in
the NAME statement, since I is referred to, and is, in fact, the value
to be "named". It would definitely have been incorrect to have used the
identical notation "I — 10" in our PRINT statement, since the same
variable I is already being used for a different replicator in the NAME
statement. Horrible confusion will result from using the same variable
as a replicator at the same time in both a NAME statement and its parallel
PRINT statement.

After the instructions "<l6C>», — 10<2D, 9R>" have been executed, CP

will be set to print position 126, past the RM of 120. However, this

does not cause error printing because the two digits stored on the tenth

AL.3b.15

replication will be put into positions 115 and 116, and no attempt will
be made to store characters in positions greater than RM.

Finally, we set up a PRINT statement for the matrix itself. Notice
the extra blank line every five lines. To get this blank line, we need
only execute an E instruction while the print buffer contains only blanks.

Thus, our PRINT statement will have the form:
PRINT { — 8(<E>, — 5 (format program for one line)))
The format program for one line could be:
<6C, 2D, 5R>, — 10 <-3D.4Z, ZR>

The entire program for the printed output of the example has now been

developed:
PRINT (<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = '>);
NAME (DELTA) ; PRINT (<1D.1ZL, 4E>);
NAME (I — 10(I)); PRINT (<16C>, — 10 <2D, 9R>,);
NAME (I — 40(1,J ~» LO(COEF [1,J1)));
PRINT (— 8(<E>, — 5 (<6C, 2D, 5R>, — 10 <-3D.4Z, ZR>, <E>Y));

AL,3b.16

AL.3c.1

CEAPTER 3c

Introduction to READ

A useful way to visualize the process of reading alphanumeric
information from cards is to consider READ te be the reverse process
of PRINT. Recall that in printing, an image was formed in a buffer
and then sent to the printer to he printed. In READ, however, the
image originates at the input hardware and is then sent to an input
buffer which is used by the READ statement in scanning string or
numeric values; these are then locaded into variables named by a NAME
statement. This buffer has a "CP", "LM", and "RM".

The NAME statement used with READ has the same form as with PRINT
except that it supplies the names of variables rather than the values
of the variables named. Therefore, the NAME statement used with READ
forms a list of ALGOL variables (either simple or subscripted), not
general arithmetic expressions, as are allowed with PRINT. Each numeric
or alphanumeric instruction assigns a value to successive variables
suppiied by the NAME statement. Replicators may be used in the READ
statement with the same meaning as in a PRINT statement,

The following sequence is incorrect:
NAME (A+ B); READ (< 3D >)

since the NAME statement names an expression which is not a simple or
subscripted variable.

The READ format program contains a list of instructions, very
similar to those im PRINT, which control the reading of new cards and
which specify the location and type of information expected to be found
in the READ buffer. Thus, the programmer, by using suitable READ format
instructions, is free to arrange his data cards in any format he desires.

The remainder of this chapter is divided into sections:

. Control Instructions

A
B. Alphanumeric Instructions
C. Numeric Instructions

D

. Card Overflow

E. An Example Using READ

It is assumed that the reader has read Chapter 3b.

AL, 3c.2

A, Control Instructions

Just as the user uses E or W in a print format to control printing,

so does he use E or W in read format to control reading.

nE Read n card images into the current READ buffer
and set CP to LM. Only the last card image read
is available after executing this instruction;
hence, "1E" or "E" is the most common use of the
instruction,

nW The action is the same as in "nE" except that the

card images are also printed on the program listing.

In a READ format program, as opposed to a PRINT program, the E or W is
usually the first instruction, rather than the last. The remainder of
the format program then controls the scanning of the characters read

into the read buffer. As in PRINT, the user has the ability to move CP:

nC Set CP to column n. CP «n

nR Move CP to the right n columns. CP «CP + n
nL Move CP to the left n columns. CP «CP - n
nB Equivalent to nR.

B. Alphanumeric Instructions

As in printing, the user has the ability to input any string infor-

mation with an nA instruction:

ni Scan the next n character positions of the read
buffer and store the information there into
l((n+3)/4) words from a NAME statement. The
information is stored four characters per word,
with the possible exception of the last word.
If the last word does not get four characters,

those characters it does get are stored right-

justified.

AL.3c.3

As an example, assume that the characters 'ABCDEL' appear on a card,

with the 'A' in column 15, The effect of executing the statements
NAME (L, M); READ(<15C, 6A>)

will be to store 'ABCD' into L and "5uEy' into M. CP will be left at
21.

Another possibility is to supply fixed string information directly
from the READ statement, rather than from the card image. This ability
is particularly useful in setting successive elements of an array to

contain alphanumeric string information. We have

'“string>' The n characters between the quote marks
are stored into L((n+3)/4) words from a
NAME statement, just as for nA, CP is

left unchanged.
Again, an example may be useful. Executing the statements

NAME(L > 5 (A[I))); READ(<"*THIS.IS,A_STRING*'>)

is equivalent to executing

Al1) « =rHr'; Al2) « 's.1s'; A(3) < 'uaus'; ale) < 'TRIN';
A[5] — LG

The number of characters between the quotes is 18, not a multiple of
four. Thus, the last two characters are stored right-justified in the

fifth named wvariable.

The last alphanumeric instruction provides the ability to read

Boolean values from a card.

nT The next n columns are scanned, but only the first
non-blank column is examined., If it contains 'T',
the corresponding name is set to true; otherwise,
the corresponding name is set to false. If the
corresponding name is not of type Boolean or logic,

the error situation "WILLEGAL BOOLEAN" exists and will

be treated as described below in Section D of Chapter

3d.

AL.3c.4
C. DNumeric Instructions

Two essentially different metheds are provided for reading numbers
from cards: fixed field and [ree field. In the former, the programmer
must specify (and therefore he must know) when he writes the program
the columns on data cards in which the numbers will be punched. This
format information is then part of the compiled program. With free
field reading, the programmer specifies in his program only the number
of quantities to be rcad. The numbers may then be punched in any format
on the cards, separated by commas. Whether fixed field or free field is
selected, however, the same rules govern the actual form of the numbers
read, (The distinction between fixed field and free field only has to do
with the columns used.} Numbers on data cards obey the same syntax as
decimal numbers in program, with one addition: If a "/" is punched
before the number, either before or after the sign, the number will be
treated as an octal number. If an exponent appears, it will then be
treated as an octal power of eight. (In summary: / on data cards is
equivalent to 8F in program, but the latter notation is not allowed on
data cards. 8L and 8R are also not allowed on data cards.)

Fixed field reading will be described first. For each number, the

programmer may specify the following information:

1. Number of columns to be read.
2. Treatment of blank columns. Blanks may either be ignored
or may be treated as if they were punched with a zero,
3. Decimal or octal conversion. The programmer may indicate
that the number is to be read as an octal rather than a decimal quantity.
4, Scaling. The programmer may indicate that the value read is to
be multiplied by a power of ten (or of eight for octal conversion).
5. Alarm suppression. Normally, reading a character other than a
digit, +, -, decimal peoint, / or 5 will cause an alarm. However, the

programmer may suppress this feature and cause such illegal characters to

be ignored.

The syntax for a read numeric instruction is as follows:

AL.3c.5

<read numeric instructiom> ::= <unsigned integer> D <read suffix>

<unsigned integer> Z <read suffix> | <int> F

<read sufiix> :.= <empty~ 1 <read suffix> <read suifix part>
<read suffix parts> :1:= 1 | N | E <integer>
<int> ::= <empty> | <unsigned integer>

The unsigned integer gives the number of columns to be scanned, and
may be as large as 127, If D is used, blank columns are ignored, while
using Z causes such columns to be treated as though they were punched
with a zero. The suffix H causes the number to be treated as an octal
quantity, regardless of whether or not a / is punched., A suffix of the
form E4n causes the number read to be multiplied by ten (or eight)
raised to the +n power. The suffix N causes illegal symbols to be ignored.

Two error conditions may be detected in reading numbers: ILLEGAL
SYMBOL and IMPROPER NUMBER. (A detailed description of error messages
in READ is given in Section D of Chapter 3d.) The first indicates that a
character other than a digit, +, -, decimal point, / or ,, has been read.

It is this error message which is suppressed by the N suffix. The second
message indicates that the number is improperly formed. For example, it
may have more than one decimal point, more than one ., 2 decimal point
after a ,,etc.

In the numeric instructions just described, the field width or
number of columns to be scanned is specified by "nD" or "nZ" and is fixed.

A more flexible type of numeric instruction exists in the form of "nF" or
free field read. "nF" specifies that n numbers are to be read and stored
into the next n names. Each number field is terminated by a comma, thus
allowing the data to be punched without reference to particular card
columns. Numbers may be punched in the same forms as for the fixed=-field
READ and may continue from one card to the next. Blanks are ignored except
that if an entire field is blank, the value of the corresponding name is
not altered instead of being set to zero.

An ™" may be used in place of a comma to terminate a number field, This
will stop the scanning of the card. If fewer than n numbers have been read,
the remaining names will be left unaltered as though the corresponding number

fields were left blank. For example, executing the statements

NAME(A, B, C, D, E, F); READ(<E, 6F>)

AL.3c .o

on the data card

12.6, /la,t5, , 0 =
is equivalent to executing the statements
A« 12.6; B « 8Fl4,,+5; D « O;

It is clear, of course, that these statements leave C, E and F unaltered.

D. Card Overflow

If a READ statement attempts to scan past the right margin, a card
overflow situation is said to exist. This situation is not treated as an
error, but is taken care of automatically by the system. As soon as an
attempt is made to read past the right margin, another card is read into
the buffer using either an E or a W, depending which of these the user
used last to read a card., CP is then set to LM (as usual), and the

character is read from that column.

E. An Example using READ

To illustrate many of the concepts which have been discussed, a com-
plete example follows, programmed in several ways. Assume an array A has

been declared

real array A[l:SO]

and that values for all 80 elements are to be read from cards. From the

programmer's point of view, the simplest way to do this is the sequence
NAME (I — 80 (A[1))); READ(<E, 80F>)

Thus the numbers may be punched, as desired, on as many cards as needed,
with successive numbers separated by commas., Assume instead that the data

cards are already punched, without commas. Each card contains eight

numbers, and each number is punched in nine columns with a column between .

AL.3e.7

numbers whose contents are to be ignored. In this case, the READ

statement given above might be replaced by
READ(- 10 (<E>, — 8 <9D, 1R>))

A more interesting possibility is the following: Suppose that the
numbers are punched onto 80 cards and that each card has punched in
colums 9 and 10 a subscript and between columns 12 and 30 a value.
That is, the 80 cards may be placed in any order and the number in
columns 9 and 10 indicates into which element of the array the value

is to be stored. One way to program this is the following:

for i « 1 step 1 until 80 do
begin NMAME (j, A(j)); READ(<E, 9C, 2D, IR, 19D>) end

This sort of construction will work since the code for naming A[j] is
not executed until after a value has been read into j. The reader

should satisfy himself that the following will also work:

NAME(— 80(j, A(3)); READ(— 80 <E, 9C, 2D, 1R, 19D>)

AL.3c.8

AL.3d.1
CHAPTER 3d

A Complete Description of ALGOL-20 Input/Output
A, Introduction

Chapter 3d is a complete, detailed description of input /output
statements in ALGOL-20. This material is organized te be used for
reference rather than for instruction. The user unfamiliar with the
concepts involved should read first Chapters 3b and 3c which are primers
on printing and reading, respectively.

Chapter 3d is divided into sections, as follows:

Introduction

. NAME Statements and Replicators
PRINT and PUNCH Statements

READ Statements

Buffer Manipulations and "| variables

T I B o T = R

Control and Execution of I/O Statements

In the following, the term "format statement' will be used to refer to
either a READ statement, a PRINT statement or a PUNCH statement, since
the latter three types of statement are used to indicate the format of
data, The term "output statement'" will be used to refer to a PRINT state-

ment or a PUNCH statement.

B, NAME Statements and Replicators

NAME statements are used to specify values to be cutput in a print
or punch operation or to specify locations into which data is to be stored
in a read operation. The NAME statement is not executed directly: 1instead
it becomes active and functions as a list of values or locations which are
evaluated when needed by a format statement. To clarify this concept,

consider the program segment:

AL.3d.2

I .7; NAME(A[T)); T «12; PRINT(<3D, E>»)

The value of A[lZ] will be printed -- not that of A[?].

Only one NAME statement may be active at any given time, If several
NAME statements appear before a format statement, only the last executed
NAME statement will be available to the format statement, Hence in the
program segment:

yame(a{1) s mam(alz))

PRINT (<format list>)
only the one element, A[i}, is available to the PRINT statement. This
topic is discussed in detail in Section F, below.

A replicator is used in a NAME statement to indicate that an expression
or list of expressions is to be used repeatedly. The replicator acts on the
list of expressions in a manner analagous to a for statement acting on a
statement in ALGOL, A replicator appears in one of three forms, the first

of which is:
$ <for clause> §

This replicator causes the replicated name list to be used repeatedly until .

the for list is exhausted., An example is:

$ for T « 1 step 1 until 3 do $ (al1}, B[1))

which is equivalent to
a(1), s(1], al2), s(2), al3), s(3)
The second form of replicator is:
<simple variable> — $ <arithmetic expressiom> $
This form is equivalent to
$ for <simple variable> « 1 step 1 until <arithmetic expression> do 3

with one important exception: The <arithmetic expression> is evaluated only

once, when the first name is actually called for. If the arithmetic expres-
sion is a simple variable or an unsigned constant, the enclosing dollar

signs may be omitted. For example:

AL.3d.3

I-N (3 —=$ 221§ afr, 9]
The third form of replicator is:
— § <arithmetic expressiom> §

This form functions in a manner similar to the one immediately above, except
that the translator creates an internal counter to use in place of the
simple variable, This form may be used whenever the controlled variable is
not needed in the name list. As in the above form, the dollar signs may be
omitted if the arithmetic expression 1s a simple variable or an unsigned

integer. For example, the construction
I8 (-1 ("%), al1])
is equivalent to

._‘J\,;,A[l]’ CANLA A[Z], et el Mkt A[S], cea, A[N]

Syntax for NAME Statements and Replicators

<name statement> ::= NAME { <name list>)

<name list> ::= <name list element> I <name list> , <name list element>

<name list element> ::- <name expression> | <replicator> (<name list>)

<name expression> ::= <arithmetic expression> ! <Boolean expression>]
<logic expression>

<replicator> ::= § <for clause> $ | <simple variable> — <limit> | — <limit>

<limit> ::= $ <arithmetic expressiom> $] <simple variable> | <unsigned integer>

C, PRINT Statements and PUNCH Statements

Most of the instructions in an output statement serve to control the form

and positioning of information as it is entered in the output buffer; hence,

it is natural to discuss PRINT and PUNCH statements together. Because the

AL.3d.4

statements are so similar in function and in order to conserve memory .

locations, PRINT and PUNCH initially share a common cutput buffer. This

means that storing characters with a PRINT statement alters any information
which may have been stored by PUNCH statements, and vice-versa. In addition,
PRINT and PUNCH share the same CP, LM, and RM, so that changing CP in PRINT
changes it for PUNCH also. Initially CP and LM are set to I, and RM is set
to 120, Characters stored to the right of position 80 are ignored when
executing an "E" or "W" instruction in PUNCH. Users may have independent
buffers for PRINT and PUNCH by using the methods described in Section F of
this chapter.

Instructions appearing in output statements fall into one of three

classes: Control instructions to specify the position of information in

the output bulfer, alpha-numeric instructions to store constant information

and alpha~-numeric strings, and numeric instructions to specify the form in

which numbers are to be stored.

Control Instructions

Associated with the output buffer are three variables: CP, LM and RM,
the character pointer, the left margin and the right margin, respectively.
CP points to the "next" position in the buffer into which information may
be stored. LM and RM refer to the left-most and right-most positions in
the buffer into which characters may be stored. The following instructions

may be used to set or change CP or to output information:

nC Set CP to position n (column n). That is, CP < n,

nR Move CP n positions to the right, That is, GF « CP + n.

nL Move CP n positions to the left. That is, CP « CP - n.
Moving CP to the left or right with nL or nR does not effect the
contents of the positions in the buffer which are passed over.

nE Print (punch) one copy of the contents of the output buffer, output

n - 1 blank lines (cards), clear the output buffer to blanks and set

AL.3d.5

. CP to the left margin LM.

nW Print (punch) n identical copies of the output buffer on n
successive lines (cards). The output is not cleared and CP is not
moved .

3 Upspace the paper to the top of the next page. (P is ignored in
punch statements.) In general a message will be printed as the
first line of the new page giving the date and a page number.

The date is printed starting at the left margin in the form
' 04 JUL 64', and the page number is printed in the last ten
columns before the right margin in the form 'PAGE nnnn ', where
nnnn represents the number of pages printed since the end of com=-
pilation, in <4D> format. Printing of the page header is under the
control of the programmer., He may restart the page numbering or
suppress the header completely. See Section E below for details.
Executing "P" does not disturb the output buffer or CP. nP is

treated as 1P or P, for any n.

In the above control instructions, and in the following alphanumeric instruc-
. tions, n is assumed to be a positive, unsigned integer less than 512. If n

is to be one, it may be omitted. For example, "E" is treated as "1E".

Alphanumeric Instructions

Alphanumeric instructions are used for all storage into the output buffer,
except for storing of numbers. There is provision for storing strings which
appear in the output statement, for storing quote marks, for storing alpha-
numeric information from a NAME statement, for storing blanks, and for storing
Boolean quantities., Whenever a character is stored into the output buffer,
it is steored into the position indicated by CP and CP is then incremented hy
one., However, before the storing is done, a check is made that LM = CP < RM,

If this condition is not met, an "E" is executed and the character is then

stored at the LM of the next line.

AL.3d.6

'<string>' The characters of the string appearing between the quote .
marks are stored, Any G-20 character except quote may be stored
by this instruction.

nQ n quote marks are stored.

nA n alphanumeric characters are stored. These characters come from
l((n+3)/4) names from a NAME statement. Each name, with the possi-
ble exception of the last, supplies four characters to be stored.
The characters from the last name are taken from the right end of
the word.

An example of an A primary may help. Assume that A[l] and

A[2) have been named, containing "STRI' and '"**NG' respectively.
Executing <6A> will cause 'STRING' to be stored into the output
buffer. Had <7A> been executed instead, 'STRI*NG' would have been
stored.

nB n blanks are stored. nB has the same effect as a string instruction
with n blanks between the quotes,

nT A Boolean value is stored. The number of characters stored into the

output buffer is min(5, n). The characters stored are taken from

one of three strings, depending on the value, v, of the next NAME,
If v is true, the string used is 'TRUE,'; if v is false the string
is 'FALSE'; and in all other cases the string is 'UNDEF'. (The
latter may occur if the NAME is not a Boolean quantity.) The two
most useful forms of this instruction are 1T, which stores 'T', 'F'

or 'U', and 5T, which stores 'TRUE.', 'FALSE' or 'UNDEF',

Numeric Instructions

Numeric instructions are those instructions used to store numbers into

"picture"

the output buffer. Such an instruction may be regarded as giving a
of the number to be stored, It includes the following information, some of

which may be omitted if not needed:

(1) sSign control: The sign may be omitted or it may be stored. 1f the

AL,3d.7

latter, two more choices are available: Positive numbers may or may not
have an explicit plus sign, and the sign may be either left-justified in
the field or it may appear just before the left-most digit.

(2) Dollar control: Numbers may be stored as dollar amounts, with
the dollar sign either left-justified or just before the left-most printed
digit.

(3) Digits to the left of the decimal point: The number of such digits,
if any, is specified. Leading zeros may be replaced by blanks.

(4) Decimal point: The decimal point may or may not appear, although if
(5) is used it must appear.

(5) Digits to the right of the decimal point: The number of such digits,
if any, is specified. Trailing zeros may be replaced by blanks.

(6) Exponent part: Several forms of "floating point" notation are avail-
able,

{(7) Miscellaneous - the user may specify four more options: The number
may be stored decimal or octal; special spacings may be used; alarm output may

be suppressed; and the number may be truncated rather than rounded.
The syntax of a numeric instruction is as follows:
<numeric instructiom> ::= <prefix> <number form> <suffix>

The prefix contains the specification of items (1) and (2); the number form
contains the specification of items (3), (4) and (5); and the suffix contains
the specification of items (6) and (7).

Consider first the number form, with the following syntax:

<number form> ::= <integer part>] <integer part> .
<integer part> . <fractional part>] . <fractional part>
<integer part> ::= <unsigned integer> D | <unsigned integer> Z

<fractional part> ::= <unsigned integer> D ! <unsigned integer> Z

Let the integer part be of the form vD or uZ, and the fractional part be of
the form TD or TZ. If the integer (fractional) part is missing, let v (T}
be zero, Then the number will be stored with v digits to the left of the
decimal point and T digits to the right. If the integer (fractional) part
contains a D, leading (trailing) zeros will be replaced by blanks, while the

Z form causes such zeros to be stored. If v (T) is zero, then no digits will

AL,3d.8

be stored to the left (right) of the decimal point. If v (7)) is non-zero,
at least one non-blank character will be stored to the left {(right) of the
decimal point, even though a zero must be stored where D format would other-
wise indicate a blank. The decimal point is stored whenever it is present
in the number form. The number is normally rounded by adding five to the
first digit to the right of the last digit stored. The sum of v and T must
be less than 15.

The prefix is the specification of sign and dollar sign. The syntax

of the prefix is as follows:

<prefix> <$ part> <sign part> | <sign part> <$§ part>

1l

<§ part> ::= <empty> l L$ | $

<sign part> ::= <empty> | L+ [L- | + | -

1l

In both the sign part and the $ part, the presence of "L" indicates left-
justified. A sign or dollar sign specified by "I+", "L-" or "L$" will be
stored into the output buffer before any digits or blanks, while a sign or

dollar sign specified by "+", "-" or "$" will be stored just before the first

non-blank digit stored by the number form. The order of storing is as follows:

. % specified by "LS"
. sign specified by "L+" or "L-"
. blanks from suppressed leading zeros in D-type integer part

1
2
3
4. sign specified by "+" or "-"
5. $ specified by "§"

5

first non-blank character from number form

o

The sign part specifies one of three possible formats for storing the
sign of the number. If it is empty, no sign is stored, even though the number
may be negative. Lf it is "+" or "L+, a sign, either '+' or '-', will be
stored, taking one space. If it is "-" or "L-", a '-' will be stored if the
number is negative and a blarnk will be stored otherwise.

The suffix part of a numeric instruction is used to supply supplementary

information: scaling of the number, storing the exponent, special spacing

and other options. The syntax is as follows:

AL,3d.9

<suffix> ::= <empty> | <suffix> <suffix element>
<suffix element> ::=L | 5 <integer> | F <integer> | E <integer>
HIK|N|T

The various suffix elements are explained below. If an exponent is stored,

it takes six positions in the output buffer, in the form: |'ug=ddy'. No

more than one of the suffix elements S5, L, F or E should be used on a given

suffix.

L

E4n

F£n

S+n

The number is left-justified in the field specified by the number
form, and the resultant exponent is stored. This is "scientific
notation".

The number is shifted so that its exponent equals #*n and the
exponent is stored,

The number is shifted so that its exponent equals #n, but the
exponent is not stored.

The number form portion of a numeric instruction containing this
suffix must be of the form "<integer part> . ", (The decimal point
must appear.) The number is shifted so that its exponent equals
+n, The resultant mantissa is then left-justified in the specified
field. The two shifting operations determine the position of the
decimal point, which is then inserted where needed. The resulting
exponent is stored.

The number is stored octal rather than decimal, If an exponent is
stored, it 1s to be interpreted as a power of eight.

One of two special spacings is used in storing the number., If a §
part appears in the prefix, the digits of the number are stored in
groups of three, separated by commas. If a § part does not appear,
the digits are stored in groups of five separated by spaces. 1In
either case, the groups are counted left and right from the decimal
point. The decimal point, if present, serves as one of the spaces.
Possible alarm output is suppressed (see the text below), and any
digits which overflow the left end of the field are lost.

The number is truncated after the last stored digit, rather than

rounded as usual,

AL.3d.10

If any format other than L is used, it is possible that the magnitude of .
the number is such that there are more digits to the left of the decimal

point than can be stored using the specified number form. In such a case

(providing that the suffix "N" was not used), alarm cutput will take place

with the use of "L" format. If E or 3 format was called for, no extra

spaces will be taken. Otherwise the number will take six more spaces

than expected., For example, the number 123 will be stored as 12 ,+01 by

2D, but as 23 by 2DN,

Examples of Numeric Instructions

The value of the number to be stored is 4673900, The numeric instruc-
tions listed on the left side of the page will cause the storing; of the
corresponding strings of characters. The numbers at the right indicate

the numbers of buffer positions used.

7D 4673900 7
8D L4 673900 8
9Z 00467 3900 9
7D.4D 4673900 ,05 o0 12
7D.42 4673900 .0000 12
8DL 46739000 L, -0T1u 14
3D.1DL 467 b L+ 04 11
12 ,22E+7 0 .47 12,+070 10
1Z ,22F+7 0 .47 4
3D.3ZF+7 L0 .46 7 7
IZF+7 . 467 4
+7D +4673900 8
-7/D ~4 673900 8
1548D S +4673900 10
L$-8D S 4673900 10
$+8D L+ 54673900 10
8Z.K 04673900 10
L$8D.2ZK $.04 ,673,900.,.00 14
3D.1DF+4 467 .4 5
3D.1DF+4T 4 6 7 3 5
8Z .5+43 4 67 3 . 000 5, + 034 15
87 .5+ 467 .39000 1, +0 4w 15
41N 3900 4
4D 467 45 0+ 03 10 =
8DH 21650554 8
4D, 2ZHL 21653 ,06 4, +04 13
3ZHNTF+3 650 3

* Alarm output used.

AL.3d.11

Syntax for Print and Punch

For the purpose of this syntax, the G-20 characters "<' and ">" will
be replaced by "<" and "»" , respectively. "<" and '">" will be reserved

for meta-linguistic brackets in the Backus Naur Form syntax.

<print statement> ::= PRINT (<format list>)

<punch statement> ::= PUNCH (<format list>)

1l

<format list> ::= <format list element> | <format list> , <format list element>
<format list element> ::= € <format program> » l
<replicator> « <format program> » | <replicator> (<format list>)
<format program> ::= <format instruction> |
<format progrant> , <format instruction>
<format instruction> ::= <control instruction> | <alphanumeric instruction> |
<numeric instruction>
<control instructiom> ::= <int> C | <int> R | <int> L | <int> E | <int> W |
<int> P
<alphanumeric instruction> ::= <string> | <int> B | <int> Q I <int> A |
<int> T
<numeric instruction> ::= <prefix> <number form> <suffix>
<prefix> t:= <§ part> <sign part> | <sign part> <§ part>
<sign part> ::= <empLy>] L+ | L~] + | -
<$ part> ::= <empty> | L$ | $
<numeric primary> ::= <integer part> | <integer part> ,
<integer part> . <fractional part> | . <fractional part>
<integer part> ::= <unsigned integer> D | <unsigned integer> Z
<fractional part> ::= <unsigned integer> D | <unsigned integer> Z
<suffix> ::= <empty> | <suffix> <suffix element>
<suffix element> ::= L | H | N l K l T | S <integer> E <integer>
F <integer>
<unsigned integer> ::= <digit> | <unsigned integer> <digit>
<integer> ::= <unsigned Lnteger> | + <unsigned integer> - <unsigned integer>
<int> ::= <empty> | <unsigned integer>
<string> ::= ' <proper string> '
<proper string> ::= <empty> 1
<proper sting> <any G-20 character other than quote>

AL.3d.12

Execution of Print and Punch Statements

From the definitions of PRINT and PUNCH statements, it is evident that

the forms of these statements are:

PRINT (fle, fie, ..., fle)
PUNCH (fle, fle, ..., fle)

where "fle" denotes a format list element. The fle's are executed in order
of appearance, from left to right. After the rightmost fle is executed, the
statement is terminated., Each fle is either a format program bracketed by
"< >" and possibly replicated, or a replicated list of fle's, separated by
commas., In turn each format program may be a list of format instructions

{ Eg., "3C, 2Q, E"). These instructions are also executed in left to

right order., It should also be noted that no replicators may appear inside

the "<" ">" brackets., If a format instruction requires a value, it will

cause a call on the corresponding NAME statement and evaluate the next expres-

sion to obtain a value.

D. READ Statements

Most instructions in a READ statements are used to scan data which
has been read into an input buffer and to store data values into variables
which have been named in a NAME statement. As in PRINT and PUNCH, the

instructions fall into three classes: control instructions to control the

reading of data card images into the buffer and the positioning of CP,

alphanumeric instructions to specify the manner in which alphanumeric data

is to be scanned and stored into variables, and numeric instructions to

specify the manner in which numbers are to be scanned, interpreted and stored

into wvariables.

AL,.3d.13

Control Instructions

Associated with the input buffer are three variables: CP, LM, and

RM -- the Character Pointer, the Left Margin, and the Right Margin. CP

points to the "next" position in the buffer which is to be scanned. LM

and RM refer to the left-most and right-most positions in the buffer which

may be scanned.

nG
nk
nR
nb

The following instructions may be used to set or change CP:

Set CP to position n (Column n). That is, CP < n.
Move CP n positions to the Left. That is, CP « CP - n,
Move CP n positionms to the Right. That is, CP <« CP + n.

Equivalent to "mR".

The following two instructions may be used to read data card images

into the input buffer:

nE

oW

Read n card images into the current READ buffer, and
set CP to LM. At the completion of this instruction,
only the last card image read is available to be scanned.
The action is as in "nE", except that the card images

are also printed on the program listing.

In the above control instructions, and in the following alphanumeric

instructions, n is assumed to be a positive, unsigned integer less than 512,

If n is one, it may be omitted. For example, "W" is treated ad "1W".

Alphanumeric Instructions

Alphanumeric instructions are used to scan alphanumeric characters and

store string or Boolean values into variables named in a NAME statement:

nA

The next n character positions of the input buffer are
scanned, and the string of n characters there is stored,
four characters per word, into the next !{({n + 3)/4)

named variables. If n is not a multiple of four, the

AL, 3d.14

'<string>'

nT

characters stored in the last variable are right-
justified,

The n characters of the string are stored as in A",
CP is not changed.

The next n character positions are scanned and a Boolean
value is stored in the next variable named. If the
first non-blank character scanned is the letter "T", the
value of the variable is set to TRUE; otherwise, it is
set to FALSE. CP is incremented by n. If the variable
named is not of type Boolean or logic, the error condi-
tion "ILLEGAL BOOLEAN" is detected and treated as described

below.

Numeric Instructions

READ numeric instructions are either fixed-field of free-field. Fixed~

field instructions consist of a primary specifying field width (the number of

characters to be scanned) and possibly a suffix specifying additional infor-~

mation, such as scaling or octal conversion,

nD {(nZ)

The instructions '"mD" and "nZ" are used to form READ
primaries. ''nD" scans the next n character positions
of the buffer for a real or integer number and stores

it in the corresponding name. Any blanks scanned are

ignored, with the exception that if the entire field of
n character positions is blank, the value zero is stored.
A number preceded by a "/" is treated as an octal (base
eight) number. n must be a positive integer less than
128. The instruction "nZ" functions as "nD" except that

blanks are treated as zeros. The forms "nD.", "nD.nD"

",nD" and the corresponding Z primaries are not correct

in READ.

AL.34.15

. The suffix of the fixed-field instruction may be empty or may consist

of one or more of the following suffix parts:

H The number is converted in octal (base eight) regardless
of whether or not it is preceded by a "/". If the num-

ber has an exponent, the exponent is treated as a power

of eight.

E+n The number read is multiplied by ten (or eight) to the
power =+n.

N Any character othexr than a digit, +, -, decimal point,

/, or , is ignored if it is scanned. CP is incremented
by one, and the next character is scanned. Normally,
scamning any character other than those listed above will
result in the detection of the error condition "ILLEGAL

SYMBOL".

In the numeric instructions just described, the field width or number
of columns to be scanned is specified by "nD" or "nzZ" and is fixed. A more

flexible type of numeric instruction exists in the form of "nF" or free

. read:

nF n numbers are to be scanned and stored into the next
n variables named. Numbers may be punched in the same
forms as for fixed-field read, and each number field is

non e
s .

terminated by a or a Blanks are ignored,
except that if an entire field is blank, the value of
the corresponding variable is left unaltered instead
of being set to zero.

A """ terminates the scanning of the "nF" instruc-
tion. If fewer than n numbers have been scanned, the
values of the remaining variables named are left unaltered,
as though the corresponding number fields were left blank.
After execution of "nF", CP points to the character posi-

tion one position to the right of the last "," or "*"

scanned.,

AL.3d.16

Card Overflow

If a READ instruction attempts to scan character positions past the
right margin, a new card image is read using a pseudo control instruction.
This instruction functicons as an "E" or "W" instruction, whichever has been
executed most recently. Scanning continues with CP set to LM. Initially,

CP =1, LM = 1, and RM = 84,

2

Error Messages

Several situations are detected by the input routine as indicating an
error by the user, either in his ALGOL 1/0 call or in his data cards. A
standard error printout is provided, containing the following information:

1. The last card read is printed. (If it was read by a W, it will
thus be printed twice.) The next line will contain an integer giving the
present value of CP and will also have a vertical arrow (1)} pointing to
the column indicated by CP., Usually, this will be the column just past the
error,

2. A single line is printed identifying the particular error.

3. The standard ALGOL run error mechanism is invoked with RUN ERROR -

READ. The following error messages (item 2, above) are detected:

ILLEGAL BOOLEAN An attempt has been made to read with a T instruction

into a variable of type other than Boolean or logic,

$$ - CARD READ An attempt has been made to read past an end-of-file
mark, Reading meore card images than are in the current input file results
in reading an end-of-file mark, This mark consists of special dollar signs
(internal representation 1658) in columns one and two. Attempting to read
still another card image causes the error condition '"$§ CARD READ" to be

detected.

NO CARD READ An attempt has been made to scan information hefore an

E or W instruction has loaded the input buffer.

AL.3d.17

IMPROPER NUMBER In scanning a number with a numeric instruction,
an illegal sequence such as more than one decimal point, more than one 4,

or a decimal peint after a , has been detected.

ILLEGAL S5YMBOL In scanning a number with a numeric instruction, a
character other than a digit, +, -, decimal point, / or ,, has been read.

This message is suppressed by the suffix N.

E. Buffer Manipulation and - variables

As has been mentioned, an input buffer and an output buffer exist in
the 1/0 system. Associated with each buffer are three pointers: CP, LM
and RM. It is frequently convenient for the programmer to be able to make
direct reference to these buffers instead of being restricted to using
format instructions to refer to them., For example, in all that has been
said up to this point no mention has been made of any way the programmer
can change LM or RM. To permit reference to the various pointers of the
I/O system, ALGOL-20 includes a special class of reserved words: the bar-
variables., These variables consist of a vertical bar ("|") followed by
an integer. The and the first digit of the integer must be in successive
columns of the same card, with no intervening blanks,.

The format of a buffer will now be described using the print buffer
for definiteness. The buffer itself consists of 120 consecutive locations
in memory, corrcsponding to the 120 columns of the printer. Characters are
stored into the buffer by placing the G-20 representation of each character
in the corresponding word, right-justified. The three pointers associated
with the buffer are stored in the three locations immediately before that
containing column one. "Column zero'" contains CP, "column -1" contains RM

"eolumn -2" contains LM. Each of these three pointers has a name which

and
is available to the user, the name being a bar-variable., For the print
buffer, CP is in |205, RM is in |206 and LM is in [207. Thus the assignment

statement

205 « 5

AL.3d.18

is equivalent to the format statement .
PRINT (<5C>)

Similarly, the programmer may change the right margin by storing into 1206
with an assignment statement.

A similar situation exists for the input buffer. 84 consecutive
locations are provided for the actual read buffer. Column zero, called
|200, contains CP for reading; column -1, j201, contains the read RM; and
column -2, |202, contains the read LM.

Since PRINT and PUNCH share a common buffer, it follows that they
share a common CP, RM and LM,

The following table may help to clarify the preceding discussion:

Location Initial Ceontents Meaning
|202 1 LM
"

(201 84 RM READ
| 200 1 GP

next 84 words - the buffer
|207 1 1M
|206 120 RM PRINT and PUNCH
| 205 1 CP

next 120 words - the buffer

This gives the programmer convenient access to the three pointers, but
it does not provide a way to refer to the words in the buffer. Since it is
frequently desirable for the user to have this ability, a means has been
provided for the user to cause a buffer to be in his own data area instead
of in the I/O system. Again considering PRINT, the user may direct that a
particular 123 eclement array is to be used as the buffer. The system will
then use the first three locations of this array as the three pointers and
the other 120 locations as the print buffer, Since the array is in the
user's memory, he may refer to any column or tu any pointer by the ALGOL

name he has given it. For example, assume that the declaration

logic array BUFF[=2 1120]

AL.3d.19

has been used and that the procedure call
BUFFER,SET ("PRINT', BUFF[0])

has been executed. (BUFFER.SET is a privileged identifier.) Then for any
k between one and 120, column k will be in BUFF(k]. CP will be in BUFF[0],
RM will be in BUFF[~1] and LM will be in BUFF[-2]. It is important to
note that]205, [206 and |207 are specific machine locations and that after
executing the above BUFFER.SET call they will no louger contain the pointers.
BUFFER.SET may alsoc be used to change the READ or PUNCH buffer, using
the string 'READ' or 'PUNCH' as the first parameter to the procedure. As
for PRINT, the second parameter should be an array element which will be
set to correspond to "column zero" of the buffer.
Before calling BUFFER.SET, the programmer should be sure that the three
pointers he is about to put into effect contain reasonable values. BUFFER.SET

only makes one check: it insists that the relationship
0 < LM < RM

be satisfied. If it is not, LM will be set to one and RM will be set to 84,
120 or 80 for READ, PRINT or PUNCH, respectively.

BUFFER.SET detects two error conditions which are treated as run errors:
a first parameter which is not one of the three legal strings allowed, or a
second parameter which is not in the user's memory.

There are certain other bar variables associated with the input/output
system which are available to the user. |210 and |211 are switches for
format and NAME, respectively., At any given time during the running of a
program when the user has NAMEd variables which have not yet been printed,
|211 will be non-zero. (Its value is the location of a routine which will
supply the names Lo succeeding statements.) If the programmer wishes to
cancel the eifect of the extra names which have been supplied, he may do so
by setting [21]1 to zero. Similarly, extra format elements which have been
supplied may be cancelled by setting ‘2]0 to zero. The programmer should
under no circumstances set either of these variables to non-zero values, or

chaos will result.

|212 and |213 are associated with the message printed at the top of each

AL.3d.20

page. Whenever the printer is moved to the top of a new page by the .

execution of a P, the user may have a message and page number printed if he so
chooses. The system has been set so that the page numbers will start with
page one on the first after the completion of the compilation. If the user
does nothing about it, each time a P is executed the first line of the new
page will contain on the left the date on which the program was run, and
on the right the page number. The page number is calculated by finding
out from the monitor the total number of pages which have been printed
since the run began and subtracting from this number the contents of 212,
The contents of 1212 is set on entry to the program to the number of pages
used by the compiler in compiling the program. The user may change it at
any time if he wishes to alter the page numbering sequence.

|213 controls the message to be printed as part of the page header. If
it is negative, no page heading at all will be printed. If it is zero, the
date and page number will be printed, as explained above. Positive values
should not be used in this location. In the present version [213 > 0 will
be treated as suppressing the header, but in planned expansion it will have

a different meaning.

|214 is the up-space counter. After each line is printed, the printer
is up-spaced the number of lines indicated by |214. This location is set
on entry to the program to one, for single spacing. The user may set it to
two for double spacing, but other values are not recommended. In particular,
setting it to zero saves paper but makes it hard to read the output.

215 is the left-justify switch. In processing number forms there are
certain occasions when either blanks or zeroes will be stored depending on
whether the programmer has used D or Z in his format. If a blank would have
been stored and if, further, |215 is zero, then ne space will be taken in
the print line instead of leaving a blank. Thus setting]215 to zero permits
the user to get left-justified numbers. |215 is initialized to be non-zero.

These last few bar-variables may be summarized as follows:

‘210 NAME switch., # 0 = there are names to be processed
|211 format switch., # 0 = there are formats to be processed
|212 page count

|213 page header switch., < 0 = suppress; = 0 = print; > 0 (do not use)

AL.3d.21

|214 upspace counter

|215 left-justify switch. = 0 = left-justify; # 0 = don't

F. Control and Execution of I/0 Statements

The relationship between NAME and format statements is given in the
following description of the execution of an input/output operation.

(1) An execution of a NAME statement sets the name switch, '|211, to
a positive integer, and sets an internal variable & to point to the first
name expression., Whenever }211 is positive the NAME statement which set
it so is said to be active. A NAME statement becomes active as encountered,
cancelling any previously active name statement.

When a NAME statement becomes active, a test is made to determine if
a format statement is already active (|210 > 0). If no format statement
is active (|210 = 0), control passes to the successor of the NAME state-
ment. If a format statement is active, the first name expression is evalu-
ated and sent to the format instruction pointed to by y. (See (2).) & is
changed to point to the next name expression, and control passes to the
active format statement.

(2) An execution of a format statement sets the format switch, |[210,
to a positive integer. The format statement is then said to be active.
Because PRINT, PUNCH, and READ statements share the switch, at most one
format statement may be active at any given time, A format statement becomes
active when encountered, cancelling any previously active format statement.

The value (address) of a name expression may be needed during the exe-
cution of a format statement. If so, an internal variable, v, is set to
point to the format instruction requesting the value (address), and a test
is made to determine if a NAME statement is active (|211 > 0)., If not
(|211 = 0), control passes to the successor of the format statement., If
a NAME statement is active, control passes to the expression pointed to by §.

(3) In attempting to evaluate a name expression, a check is made to

determine whether § points to an expression or to the end of the NAME

AL,3d.22

statement. If & points to an expression, it is evaluated and &§ is set to .
point to the next name expression (or to the end of the NAME statement),

and the value (address) of the expression is sent back to the requesting

format instruction. When all name expressions have been evaluated, & points

to the end of the NAME statement. In this case, no expression can be evalu-

ated, and {211 is set to zero indicating that no NAME statement is active.

Control is passed to the common successor of the now inactive NAME statement

and the active format statement. (See (5)}.)
(4) After the last format instruction in a format statement 1is executed,
[210 is set to zero, and control is passed to the common successor. (See (5).)
(5) The common successor of an active statement and a statement which
has just become inactive is the successor of that statement which was most

recently encountered during the execution of the ALGOL program.

To clarify the above points, consider some examples of sequences of
input/output operations. In the following, N(P) denotes a NAME statement with
P name expressions, F(P) denotes a format statement (PRINT, PUNCH or READ)
which requires P values or addresses, 5 denotes an arbitrary ALGOL statement,

and S' denotes any ALGOL statement which is not an input/output statement.

A N(6); S'; F(8); S;

Executing N(6) sets |211 > 0 and sets & to point to the first name
expression., S' is executed and eventually F(6) is entered., Because N(6) is
already active, each request for a value or address will be filled by N(6).
When the execution of the last format instruction is complete, F(6) becomes
inactive, and S is executed. N(6) is still active, but § points to the end
of statement. In this state, any request for a name expression will render
N(6) immediately inactive. A NAME statement followed by a format statement

is the simplest and most frequently used sequence,
B: F(5); S'; N(5); 8

B illustrates an alternate sequence, in which the format statement pre-
cedes the NAME statement. Executing F(53) sets [210 > 0, but no requests for
name expressions can be filled because there is no active NAME statement,

vy is set to point to the first requesting format instruction, and S' is exe-

cuted. When N(5) becomes active, it determines that F(5) is already active.

AL,3d.23

. The first name expression is evaluated and sent to the format instruction
indicated by vy. Eventually, the last format instruction in F(5) is exe-
cuted and F(5) becomes inactive. As in example A, N(5) is still active
but any request for a name expression will render it inactive, Control

then passes to S.
C: N(4); N(2); F(3); 8'; N(1); s

C illustrates a more complex situation which is probably a programming
error. N{4) becomes active, but is cancelled by N(2). N(2) and F(3) function
as in example A, except that when F(3) requests a third name expression, N(2)
becomes inactive. S' is executed and N{I) encountered. N{(1) now supplies
the requested name expression to F(3) and F(3) becomes inactive, passing
control to 8. Users should be wary about using sequences such as described
in C as it is very easy to produce an error which has repercussions on many

other input/output operations in the program. As a safeguard, the name and

format switches may be zeroed as described in Section E of Chapter 3d.

AL.3d.24

