AL, Z.1

CHAPTER 2

Notes on ALGOL at Carnegie Tech

INTRODUCTION

ALGOL-60 has been designed to be both a universal language for describing

and publishing numerical algorithms, and a programming language for executing
algorithms on computing machines. The "reference language' ALGOL-60 has been

precisely and elegantly defined in the Revised ALGOL-60 Report (Communications

0i the ACM, 6, 1 (Jan. 1963)). When ALGOL is actually implemented on a par-
ticular computer, however, some changes of notation and some restrictions are
usually added te this definition.

The ALGOL translator which has been written at Carnegie Tech for the
CDC G-20 computer accepts a language which we call ALGOL-20 to distinguish it
from ALGOL-60 when we need to be purists., As a matter of fact, most of the
differences between ALGOL-20 and the reference language ALGOL-60 are minor;
however, a kncwledge of them is needed to use the CIT ALGOL system successfully.
In this document, a reference to simply "ALGOL" wil! always mean ALGOL-6C, the
reference language.

This chapter describes those aspects of ALGOL-20 which differ from
ALGOL-60, As such, it is the primary documentation of our ALGOL system. It
is keyed to both the Revised ALGOL-60 report and to the text, A Guide to Algol,

by D. D. McCracken. References to the former are by section numbers given in
square brackets, and to the latter by section numbers given in round brackets.

Thus the paragraph at the top of the next page relates to section 2.3 c¢f the

Revised Algol Report and to section 1.4 of McCracken.




AL.2.2

SYMBOLS (1.4)(2.3]
The G-20 accepts all of the special symbols of ALGOL-60 except for those

shown in the f{ollowing table:

ALGOL- 60 ALGOL-20

= ("implies') Not available, but "." may be used with "' to

obtain the same effect. GSee page 2.8,

= ("is equivalent') Use "-". See page 2.8.

||:l‘_1l

X {multiplication) Use

<+ Not available, but "i" may be used with "/"
with the same ecffect. Sce page 2.7.

~ M

= Use '4>'.
= | Use "=<'',
“¥  (string quotcs) Both represented by ‘. See page 2.3.

In four cases, ALGOL-20 uses a pair of adjacent symbols te stand for a
single symbol of ALGOL-60. For example, the ALGOL-60 assignment operator ":="
is strictly a single symbol, but it must be punched into an ALGOL-206 program
card as a colon and an equal sign in adjacent columns. There must be no blanks
separating the symbols of the pair, and they must both be on the same card.

Note: punching them into the same column will give a "hash” of holes which the

G-20 will interpret as some other (erroneous) character. The four double-

symbol characters are

ALGOL-60 character ALGOL-20 character pair
== ({ PR
= i >
z i
# = ("$#" is also allowed)

non-existant
non-existant
non-existant




AL.2.3

NUMBERS (2.1)[2.5)

(a) A number, N, in an ALGOL-20 program must either be zero {(which may be
punched with or without a decimal point) or else its absolute value N must

satisfy:
1,275,-57 = N = 3.450,+69

{b) Because of the nature of the G-20 computer, the distinction between
real and integer numbers [s unimportant. The programmer may write an integer-
valued constant with or without a decimal point (e.g., "34", "34.", or "34.0")
without changing the type of arithmetic performed with the constant,

Numbers are represented in the G-20 in "floating point" form with a maxi-
mum of 42 binary digits of mantissa, corrvespending toe approximately 12 decimal
digits of precision. If more than 12 digits are written, the extra (least
significant) digits will be ignored. (The number is rounded at the 1l4th octal
digit.)

(c) 1In ALGOL-20, the last character of a real number may be a decimal
point; thus, the number "6.'" is legal.

(d) Octal numbers may be written in ALGOL-20. See Chapter be.

STRINGS (2.6}

(a) A string cannot contain a string since ALGOL-20 has no way of dis-
tinguishing between the left and right string quotes.

{(b) Strings of four characters or less may be used as logic constants
and assigned to logic variables. If more than four letters appear in such a
string, only the leftmost four are used. Strings of less than four characters

are stored right-justified,

IDENTIFIERS AND VARIABLES 2.2){2.3, 3.1

(a) Only upper case (capital) letters are available in ALGOL-20.
(b) 1n ALGOL-20, certain identifiers have special meanings and are
thercfore reserved. The programmer may never use these reserved ALGOL identi-

fiers as variables or, indeed, for any purpose other than their reserved mean-

ings. These reserved identifiers must be separated from adjacent identifiers




AL, 2.4

by at least one blank. For example, if the blank betwecen the reserved

identifier IF and the identifier "X were omitted in "IF X > 0", then the
ALGOL translator would interpret "IFX" as a single variable identifier; as
a result, the statement would have no meaning at all.

The reserved identifiers in ALGOL-20 are

ABS GO TO PRINT
ARCTAN HALF PROCEDURE
ARRAY IF PUNCH
BEGIN INDEX READ
BOOLEAN INPUT REAL
COMMENT INTEGER SIGN
cOs LABEL SIN
Do LIBRARY SQRT
ELSE LN STEP
END LOGIC STRING
ENTIER MAX SWITCH
EXP MIN THEN
FALSE MQD TRUE
FOR MONITOR UNTIL
FORWARD NAME VALUE
GO CUTPUT WHILE
GOTO OWN

Same pf these reserved identifiers have no ALGOL-6Q equivalent; in particu- .

lar:

HALF, INDEX, LOGIC (see page 2.5 below)
MAX, MIN, MOD (see page 2.9 below)

NAME, INPUT, OUTPUT, PRINT, PUNCH, READ
(see Chapter 3 - Input/Cutput)

LIBRARY (sce Chapter 5)
FORWARD
MONITOR

FORWARD and MONITOR have not yet been implemented, but will be described

when they are available,

All of the ALGOL-60 standard functions are available in ALGOL-20, and

their names are reserved identifiers:

ABS ENTIER SIGN (2.4)
ARCTAN EXP SIN {3.1.4]
Cos LN SQRT

See Chapter 5 for further information on these functions.

"TQ" is reserved only when it follows immediately after the reserved

identifier GO, In any other context, "TO" may be used as an ordinary




AL.2.5

identifier by the programmer., See page 2.10 of thesc notes.

in addition teo the rescrved words listed above, ALGOL-20 includes a set
of "privileged" identifiers which have bullt-in meanings without being
declared; they are, in cifect, doclared by the translator in a block head
outside of the outer-wost block of the program. Therefore, if the programmer
does not wish to use cne of these identifiers in its privileged meaning, he
may simply ignore the [act that it is privileged and declare and use it as he
would any non-special identifier. Further, if a privileged identifier 1Is
declared in an inner block, it vesumes its privileged meaning as soon as the
end of the inner block is passed. These identiliers are listed and their
meanings are explained in Chapter 6d.  ldentificers may be added to this list
Sy the Computation Center at sowe future time. Since they are not reserved,
addirional privileged identifiecrs cannot accldentally interfere with identi-
fiers written into a corrent ALGOL program,

(c) Sp.-es may not appear within en idontifier in ALGOL-20. The pro-
grammer may, how.-er, [reely sprinkle periods 1.) within identifiers to
geparate Lhem into words and improve cthe readabilitvy of the program. These
periods are ignored by th. ALGOL-20 trenslator; therefore, the following are

all instances of the same identifier::

READACARD
READ.A,.CARD
R.E.A.D.A.CARD.,

(d)  ALGOL-20 aliows hoth simple and subscripted variables . rype half,

and lopic, as well as real, integer, and Boolean. Also, simple variac'es may
be of type index.

Real wvariables are stored in the G-20 with a precision of 47 binary dig:i s,
requiring two successive memory cells per variable, Half variables are stored
with a precision of only 21 binary digits (about & significant decimal digits)
and cccupy only a single location, but otherwise act as real varjables. Theve-
fore, the programmer may use half varjables to gain memory space al Lhe
expense of precision.

Logic variables are unsigned 32 bit G-20 logic words, which way be used

for bit and character manipulation processes. They may be used in either

arithmetic or Boolean cxpressions. Simple varviables of type index will be

assigned to G-20 index registers but act oihoiwise as variahles of tyue




AL,2.6

integer. The uscs of logic and index variables are complex to explain but

obvious to those ALGOL programmers who are also knowledgeable in G-20 machine

language For more information sce Chapter be.
(¢) The value of a real or half variable must either be zero or else

lie within the range given below:

i

abs (R}
abs (H)

1A

3.450 469
L.045,,+63

real: 1.275,-57
half: 1.275.,,-57

1A
A

integer and index variables will always take on integer values in the range

221

-2007152 < I < 2097152 (= )

logic variables are always positive., 1If used as strings, they are four or
less characters in length, and If used as numeric quantities they arc restricted
to

0 = L < 4294 967296 (. 232)

The values of Boolean variables nust be either true or false.

The G-20 replaces by zero any non-zero arithmetic result which is smaller
than 1.175..-57 in magnitude; this situation is ealled an underflow. An inter-

mediate arithmetic result which is greater than 3.450,+69, the largest number

representable in the G-20, is called an overflow. An overflow duriung execution
of the object program will cause the run-time error message "RUN ERROR-EXPQ'" to
be printed, and terminate execution of the program (unless error recovery is in
use) . See Chapter ob for further details cn run-time errors.

An exponent overflow cannct occur during translation of the ALGAL source
prosram; violation of the restricticns o ALGOL-20 numbers given above will
causc a normal syntactic crror message which will not, however, terminate
translation.

The number 3,450,469 is the upper limit for the result of each individual
arithmetic operation in the evaluation of any arithmetic expression, regardless
of the types of the variables ia the expression. However, if the result of
the cxpression is assigned to a half variable, then a value greater than
1,645 +63 will result in an exponent overflow message as explained above. A
value assigned to an integer variable, on the other hand, will be truncated
medulo 221 - 2097152; while a value assigned to a logic variable will be trun-

32 . A . . .
cated modulo 2 (and given a positive sign); in either case, no overflow

message will occur.




AL.2.7

ARITHMETIC EXPRESSLONS (2.3)[3.3]

(a) In ALGOL-20, the asterisk ("*") is used in place of the multipli-
cation sign ("«") of ALGOL-60.

(b) ALGOL-20 arithwmetic expressions may contain the truncation opera-

tor defined mathematically by

iX - sign (X) * entier (abs(X))

That is, iX is simply the integer part of X if X = 0, and is -{integer

part (-X)) for X < 0. Thus, 1(L.7) = 1, 1(-1.7) = -1. Truncation is per-
32 )
formed wodulo 2 = 4294967296; for example, 14294967298 - 2.
The truncation operator is umary, having exactly one operand which is

tig i

the complete expression immediately toc the right of the "i" symbol. ithe

precedence of ™" is very high, so that '"i" will be executed before "t"

or
any other arithmetic operation {unless parentheses are used to force a dif-
ference order). For example, "1X/Y" means (1X)/Y and "X1iY" means Xt (4Y).
(Truncation is done by an add-logical in mode xzero of zero.)

(¢) The truncation operator, 1", can be used to get the effect of the

integer divide operation, "', which is not available in ALGOL-20. If [ and

bl

J are integer variahles, then
T+ J - i (1D

Notice that the "i" operater can operate on any integer or real expression,

and is therefore more general than ":"

(d) When a variable of type half appears in an arithmetic expression,
the rules for determining the type of the result are exactly as if the half
variable had been of type real. In [act, full precision (42 bit) floating
poine arithmetic is always performed on all variables other than boolean and
logic in ~ue G-20.

(e} The "+ and "-" can be used either as binary operators or else as
T

unary operators. “.ep "+" gnd "-" are used as unary operators with "1 in

. . s g g 1 ,
the combination "t+7 o " " hayentheses around the exponent may be omitted.

3



AL.2.8

The following table shows some examples of this rule:

The ALGOL-.20 Expressions i Means: (hoth in ALGOQL-20 and ALGOL-60)
4y 5 Xt (+Y)
X-y Xt (-Y)
Xti-Y i X1 {4 (-¥))

(f) The precedence of coperators and relations in ALGOL-20 is

b (done first)
mod

-+ (used as unary operators)
/e

-+ (used as binary operators)

£ -Aar»-a< > <

>

v (done last)

That is, unless parentheses force a different order, ! will be performed,
then mod, then t, and sc on. The unary operators + and - are special cases,
Unary + is ignored. Unary - is performed on the expression on its right whose

operators have higher precedence than it. For example,

qmed - at bmod ¢ ¥d
is

q mod{((-(a 1 (b mod c})) * d)

BOOLEAN EXPRESSIONS (3.6)[3.4)

{a) The Boolean operater "5" ("Implies') is not available in ALGOL-20.
However, for any Boolean expressions Bl and BZ' the ALGOL-60 expression

Bl = 52 may be replaced by either of the equivalent forms:

— B ¥ B

1 2

- (Bl ~ - Bz)

(b) ALGOL-20 substitutes the equality symbol "=" for the Boolean

equivalence operator "=". Note that the ALGOL 60 report gives = very




AL,2.9

low precedence,  ALGOL-2U cannot distinguish between = and = and

thus gives them the same preccdence, Thus A~ B = €~ D 1is taken as

A~ (B - C) -~ D, and parentheses must be used 1f any other meaning is
intended.
STANDARD FUNCTIONS (2.4y[3.2.4)

ALCOL-20 has three built-in operators, MAX, MIN and MOD, which are
not in ALGOL, These are defined mathematically as follows, where El’ E2,...E

are arithmetic expressions.

E,.} - the largest algebraic value of the N

MAX (hl, hz, e By

expressions;

MIN (£ By, e EN) .~ the smallest algebraic value of the N
e¥pressions,
B, w0 . B, E, ¥ | (Ei/Ez)

MAX and MIN may have any number of expressions as arguments.
Note that MOD is written as an .,-rator betyeen its twa arguments. The above

definition for MOD holds for all vat.-=s of El and EZ’ but in the case where

both arguments are positive integer-valucd gxpressions, then E1 MOD E, is

the remainder for El divided by E, (and l(Elfv\) is the integer quotient).

Although E1 and E. cach appear twice in the defi. ‘tion, they are actually

2
evaluated only once,

ASSICNMENT STATEMENTS 2.5y {4.2)

{a) [n addition to the ":_" operator of the reference language,
! guag

ALGOL-20 allows the leit arrvow ("<!) as an assigoment operator. The left

o

arrow has the same meaning as except when a non-integer expression

ig assigned to an integer variable. The assignment statement

<integer variable» « <non-integer expression®

rounding. If "::" {s used instead, the value will be rounded to an integer
in conformity with the reflerence language; however, the ! operator pro-
duces more efficient object cede,

(b) In a multiple assignment statcment, the "left part" variables

need not all be of the same type. For example, the sequence




AL.2.10

REAL X

I« X T 12 37X,

1

is allowed in ALGOL-20. The rule given in (a) above determines for each

integer left part variable whether or not vounding will occur,

LABELS AND GO TO STATEMENTS (3.2) (4.3}

(a) Only jdentifiers may be used as labels inr ALGOL-20; integer

labels are not permitted.

(b) In ALGOL-20, GOTO and GO are both reserved identifiers, and TO

is ignored when it follows after GG, Hence
GO TO lahel
GOTO Label
GO Label

are alt equivalent and permissible.

CONDITIONAL STATEMENTS (3.3)(4.5)

{a) Because of character set restrictions, ALGOL-20 must make the

following substitutions for relational operators:

ALGOL- 60 ALGOL-20
= —<
= -

In addition, hoth "#'" and 'L-=" are allowed in ALGOL-20,

(b) There are some complex syntactic construction which were allowed
by the original ALGOL-60 report but were subseguently found to be ambiguous
or controversial. One such ambiguity arises when a for statement comes

within the scope of an if clause.

(1) Consider the [ollowing construction:

if ... then
for . . do
begin
if ... then <unconditional statement>

glse <statement>

end ;




@

AL.2,11

If the "begin ... end" pair is omitted, this construction becomes
Degth gng
ambicuous since Che phrase 'else Zstatement>" ¢ould belong to either the
g { L B

inner or the cuter if clause. ALGOL-20, in agreement with the 1962

revision of ALGOL-60, allows the 'begin ... end" pair to be omitted, and
considers “else <statement>" Lo belong with the second <if clause>; i.e.,
the construction is treated as if the "begin ... end" pair were actually
present.

(2) The foilowing construction:
if ... Ehen
for ... do ~unconditional statement>
else <statement>
1s not actually ambiguous, However, the revision of ALGOL-60 syntax which
took care of case (1) also had the undesirable effect of outlawing con-
struction (2) which is perfectly respectable. Therefore, ALGOL-20 will
allow (2) but will print a "Note 7" (see Chapter 6b)} to peoint out that it

is inconsistent with revised ALGOL-60 syntax.

CONDITIONAL EXPRESSIONS (3.5)

(a) ALGOL-20 allows certain constructions with conditional expres-
sions which are unambiguous but illegal in revised ALGOL-60. The ALGOL-20
translator will flag any of these constructious with a "Note 4" message
(see Chapter 6b) to call the programmer’s attention to the violation of
ALGOL syntax.

In ALGOL-20 the right-hand operand of a binary operator may be a
conditicnal expression without parentheses; e.g., the second set of

parentheses may be omitted in:
(if X>0 then X else Y) + (if Y >0 then 3 else X
Note, however, that omission of the first set of parentheses, surrounding

the conditional expression which is the lefit-hand operand of the binary

operator "+", would change the meaning to the following:

if X0 then X else (Y+ if ¥ >0 then 3 else X .

Similarly, the following construction is legal in ALGOL-20:




AL,2 .12

but will cause a '"Note 4'". It will be interpreted as:
X* (if A> B then 3 glse (Y + 7))

ALGOL-20 allows the analogous constructions with binary Boolean
operators and conditional Boolean expressions, and with relational
operators and conditional arithmetic expressions. An example of the

last is the Boolean expression

(if BOOL then X else Y) < if BOOL then 3 else Z

The expression with the [irst set of parentheses omitted would be inter-

preted as

if BOOL then X else (Y < (if BOOL then 3 else 2))

FOR_STATEMENTS (4.1 [%.8)

{(a) A left arrow may be used instead of '":=' in an ALGOL-20 for

m,omn il

clause; "' will truncate and "::" will round each implicit assignment toc
a for variable of type integer.

(b) The value of the controlled variable is not undefined upon nor-
mal cxit [rom an ALGOL-20 for statement. The value of the for variable
upon exit depends upon the form of the last element in the [or list, and
is in general just what would be obtained if the equivalent basic programs
(sce section 4,1 of McCracken or section 4.6.4 ol the report) were sub-
stituted for the for statement. Thus, upon exit [rom an until or while

form of for list element, the for variable has the first value for whiru

the final test failed. For example:
FOR I - 1 STEP 1 UNTIL 10 DO 5

leaves I - 11 when the for list is exhausted and control .asses to the

next statement.

(c) A fourth form of for list element is permitted in ALGOL-20:

FOR Ve El STEP 72 WHILE B DD 55

where El and E. are arithmetic expressiuns, B is a Boolean expressien, and

2




AL,2,13

S is any statement. This is equivalent to the simple program:

VeEl;

LOOP: TIF B THEN

BEGIN
5 ;
v « VvV + E2; GO TO LOOP

END ;
Notice that if the Boolean expression B is: (V - E3) * (EZ) = 0 then
the new step ... while form of for list element is identical to the
step ... until form. However, when (as is usual) the sign of the step
expression E, is known to the programmer, the step ... while form

2
(omitting the multiplication by EZ) will be more efficient in both space

and time.

ARRAYS .2, 5.9(5.2, 3.1.4]

(a) ALGOL-20 arrays may be of type inteper, real, Boolean, half, or

logic. 1Index arrays are not permitted,

(b) A non-integer value of a subscript expression in ALGOL-20 is
not rounded. only truncated. This may lead to hard-to-detect errors. For
example, suppose that the result computed for a subscript expression is
3.9999,.. instead of 4 because of round-off error; this value will be trun-
cated to 3, referring to the wrong clement of the array., Thus, the plaus-

ible program:

FOR X « 0O STEP 0.2 UNTIL 1.0 DO
A [5rx «x;

may not work correctly because of the round-off error in ¢.2 which cannot
be exactly represented in a binary computer like the G-20. The following

alternative will work:

FOR 1 « 0O STEP 1 UNTIL 5 DO
Al < 1/5,

(¢} The speed of execution of an ALGOL-20 program does not depend

upon the lower or upper bounds of an array subscript, upon the order of

the dimensions, or upon the types of variables appearing in subscript




AL.2.14

expressions, however, the number of memory cells required by an array
does depend upon the order of the dimensions; the least number of cells

is required if the longer dimension is listed last.

OWN VARIABLES (6.6)(5.0]

Own arrays may be used in ALGOL-Z0, but they must have fixed sub-
script bounds so that storage may be allocated to them before execution
begins; that is, "dynamic own arrays’ are not allowed.

Own simple variables and gwn arrays are initialized to zero (or

false, in the case of Boolean quantities or in the case of logic

quantities) before execution begins.

PROCEDURES
(a) Parameters (7-4)[4-7]

When the first occurrence of a label in a block is as an actual

parameter in a procedure call, then the ALGOL-20 processor must be fore-

warned that this identifier is a label. This requires that the label
identifier appear in a label declaration in the block head. For example: .
BEGIN
INTEGER I, J; LABEL L;
PROC (X, L) ;
L:I«1I+1,;
END ;

This is the only circumstance in which a label declaration is required in
ALGOL-20,
(b) Specifications (7.5)[5.4.5]
All formal parameters in an ALGOL-20 procedure declaration must appear

in the specification part of the procedure heading.

{(c) Recursive Procedures (7.7)
Recursive procedures are not now available in ALGOL-20.

{d) Arrays, switches, and labels cannot be called by value.




